
 

Lecture 7  Dielectric Optical Wave Guide  

Dielectric Optical Waveguides 

We have seen that, when an optical wave is incident from a high-index dielectric medium on an 

interface with a lower-index medium at an angle θi >θC, total internal reflection occurs. If a 

high-index medium is “sandwiched” between lower-index layers, then TIR can trap a wave: 

 

In principle, since the reflectivity is one, the light could propagate forever. In fact, only residual 

absorption from defects in the glass and scattering from inhomogeneities limit the propagation 

distance. (We will consider those loss mechanisms in detail later.) Modern optical fibers allow 

nearly lossless propagation over many kilometers, resulting in their ubiquitous use in optical 

communications. 

 

We will begin by considering a qualitative (or semi-quantitative) description of the waveguide 

propagation in terms of the propagation vector k .We will then actually solve the boundary-value 

problem to see what the “modes of propagation” are in the waveguide. 

 

Wave vector model of slab waveguide 

In general we may have n1≠n3, but we can consider the simpler case of n1=n3, i.e. a symmetric 

waveguide, and still illustrate the salient features. 
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(Examples include glass waveguides, using 2 different glasses with n1)n3, or semiconductor lasers 

such as GaAs/AlGaAs structures, where  
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Crucial fact: not any k -vector can propagate! 

Consider a k -vector with magnitude 2
n

c
 propagating in the slab with an angle i : 



 

 

Remember that the wave fronts in the plane wave are perpendicular to k .This means that the line 

BE must be a wave front. So must CD. 

 

If BE is a wave front, then we must have 
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(i.e. the optical path difference 
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= an integer number of wavelengths) 
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The values of i  which allows this condition to be satisfied give the directions of k  which 

can propagate   “modes” (note | k |=n2/c is same for all modes) 

 

Note that 0 / 2im      is always a solution  

 there is always at least one allowable mode in a symmetric waveguide. 

 

Smaller θi=> larger m, but eventually θi<θc 

And TIR no longer occurs => there are a finite number of guided modes. 

Graphically, we can count the number of modes by plotting 


 versus cos i : 
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where Int[] signifies the integer part of [] 

Now, this simple analysis has neglected the phase change which occurs on TIR. Of course, the 

phase change   is a function of i , and 
( / 2)s  

. 

Thus P.A3 really should read  
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And the 


 vs. i  plot looks like 

 

 

2
i


 

   
=> 0 + 2π=2π 



 

=> m=1 

=> one mode less 

Of course the phase shifts  s p , so the solutions i  to the phase condition are generally 

different for S and P polarization   

 

Mode structure 

From our simple wave vector picture we can even get a qualitative idea of what the field profile 

of confined modes look like. Consider the phase fronts of waves corresponding to wave vectors 

k . 

As shown  

 

 

 

Clearly the two plane waves in this picture constructively interfere in 3 places (edges and center 

of waveguide) 

=》expect 3 antinodes in the field profile 

Obviously for k  propagating with larger i  ,there will be fewer antinodes (e.g.1 antinode 

when i =π/2),and there will be more antinodes at smaller i . 

This is about all we do with the wave vector model. In order to actually determine the mode 

profiles, we must solve Maxwell’s wave eqn, for the slab, subject to the appropriate boundary 

conditions, 

 

Electromagnetic analysis of slab waveguide 

We consider a 3-layer waveguide 



 

 

As usual, we supposeμ=1,so the index in each layer is given by i
rj

n   j=1,2,3 and 

r o    as usual 

The wave eqn. (see notes P.8) is 
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In homogeneous media, the Maxwell eqn. 0D   

(No free change) yielded 
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If this is << 
2E , then 0E   and the usual wave eqn. results (“weak guiding 

approximation”). 

Note that this is a consideration only for P Polarization (usually called a TM mode in waveguide 

problems, since the magnetic field is transverse to the x-z plane). 

For TE modes, i.e. S polarization, yE E y   

=> 0xE    => 0E   identically. 

Noting that 
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Consider a harmonic wave propagating in the z-direction with frequency : 

( )( , , ) ( ) i t zE x z t E x e      ( zk   in Lipson) 

=> 

22 2
2

2 2 2

2
( ) 

 


    


j
r

nE x
E E E

x c c
, where in  is the index in layer i (i=1,2,3) 
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Note that   serves as a wave vector along the z direction: it is often called the “longitudinal 

wavevector “or the “propagation constant”. 

 

It is critical to note that the mathematical form of the solution to   depends critically on 

whether 
2  is greater or less than
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 E is of the form cos( ) sin( )A hx B hx  (or 
ihx ihxA e B e  ) 

i.e. the solutions are oscillatory 

  

case ii : 
2 0h   => h i  purely imaginary (  real ) 

   =>  
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   => E is of the form 
x xAe Be   

  i.e. the solutions are exponentials  

 

Now, we have 2 1, 3n n n .Let’s suppose  



 

   2 3 1n n n  .     

Now let’s see how the solutions change as we start with a large   and gradually decrease it. 

Case (a): 
2 2 2 2 2 2 2

2 3 1o o on k n k n k     

 Solutions must be exponential in all 3 layers. 

 

Now we have to match the solutions in the 3 layers at the boundaries, subject to the boundary 

conditions imposed by Maxwell’s eqns. 

 

Digression on boundary conditions  

We saw (P.23) that the tangential components of E and H must be continuous across a dielectric 

boundary. 

 

Consider S polarization (TE wave) 
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  Now the transverse component of H  is zH .Since zH is continuous across the boundary, 

clearly 
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 must also be continuous across the boundary  

To summarize, both yE  and its derivation 
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 must be continuous across the boundaries. 

Similar conditions can be determined for TM waves. 

Back to case (a): 
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Together with the boundary conditions, the mathematical solution must look like (a) in the figure 

below: 

 

Clearly, the field ( )E x  increases to infinity as x   

This is unphysical! Such a wave would have infinite energy (worse: infinite energy density), 

Thus it must not correspond to a real physical wave, even though it is a perfectly good 

mathematical solution to the wave eqn. 

Cases (b) and (c) : 1 3 2o o ok n k n k n    

In region 2 (the core), the solution is sinusoidal  

In region 1 and 3(cladding), the solutions are exponential 

In order to correspond to physical waves, they must be decaying exponentials (i.e. 
xe

in region 

1 and 
xe  in region 3, where x < 0). 



 

Now, it is possible to satisfy continuity of both E and 
E

x


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 in this case: see figure curves (b) and 

(c). 

These waves are confined to the core region, and thus are the confined waveguide modes, 

sometimes also called “guided modes” 

 

Case (d):  1 3 2  o o ok n k n k n 

Now the solution is evanescent in region 1, but oscillatory in regions 2 and 3.This is often called a 

“substrate mode”, since it is a mode which radiates into the substrate as it propagates. 

 

Case (e): 1 3 2o o ok n k n k n     

   Solution oscillatory everywhere => “radiation modes” 

  

It is easy to see what is happening between cases (d) and (e), i.e. when 
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Recall, the condition for total internal reflection is just
1

2

sin c
n

n
  . Thus the transition between 

unconfined and guided waves is exactly the same as the transition between partial and total 

internal reflection. 

Cases (b) and (c) thus correspond to TIR at both upper and lower interfaces, thus leading to 

guided waves. In case (d), the reflection at the lower interface is partial, not total, so light initially 

in the core is gradually radiated into the substrate cladding layer, hence the term substrate mode. 

 

In general, the modes of the field are forced by applying the boundary conditions to the solutions 

of the wave eqn, in the 3 regions. We shall now do this for the case of TE modes in a symmetric 

waveguide. 

 



 

 


