

大分子穿越纳米孔的跨膜输运动力学

罗开富

中国科学院软物质化学重点实验室 中国科学技术大学高分子科学与工程系

2012年11月8日 北京

高分子链的尺寸和松弛时间

• 松弛时间

$$au_r \sim R_g^2/D$$

 $\sim N^{1+2\nu}$ (D ~ 1/N) (Rouse松弛时间)
 $\sim N^{3\nu}$ (D ~ 1/N ^{u}) (Zimm松弛时间,考虑流体力学效应)

- 研究背景
- ❷ 实验研究
- ❸ 理论与模拟研究

④ 结论

多学科前沿交叉的重要问题

微米/纳米通道的单分子操作

凝胶渗透色谱 (GPC)

最重要的应用:新一代基因测序技术

1989年提出利用纳米孔来进行DNA测序的蓝图

- D. Deamer 美国加州大学教授
- D. Branton 美国科学院院士、哈佛大学教授 [Science 2012, 336, 534]

Nanopore dreamers. After David Deamer (*top right*) sketched out nanopore sequencing in 1989, he teamed up with Daniel Branton (*bottom right*).

基本原理

高分子进入孔导致离子流下降

碱基尺寸差异以及与孔之间不同的 相互作用导致离子流信号不同

蛋白质孔 (96年)

Song et al.,1996

John Kasianowicz Amit Meller Alek Aksimentiev Jens Gundlach Hagan Bayley

固体孔 (01年)

Li, Golovchenko et al., 2001

Cees Dekker

表征DNA链长度

Effective charge per nucleotide = 0.2 e in the pore lumen (2.4 e total)
5 pN force at 120 mV applied potential

[J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, *PNAS*, **93**, 13770 (1996)]

[Mathe et al. PNAS, 102, 12377 (2005)]

区分不同碱基的RNA

区分相同长度不同碱基的DNA

Poly(dA)比Poly(dC)慢两倍,且 为长尾分布。

离子流下降幅度:差别不大(<5%) 二嵌段共聚物:不容易通过I_B区分

[A. Meller *et al. PNAS*, 97, 1079 (2000)]

2001年以后:固体孔

0.01 L

 10^{3}

N (bp)

10⁴

[A. Meller *et al. Biophys. J.*, **97**, 1079 (2000)]

Base by base 检测存在的问题

● 离子流信号:孔长度依赖性,生物孔可容纳12个碱基 ● DNA穿越速度太快 (微秒每个碱基)

生物分子和生物孔的修饰 固体孔的结构和修饰

力学控制

[U. F. Keyser, *J. R. Soc. Interface*, **8**, 1369 (2011)] [B. Luan *et al.*, *Nanoscale*, **4**, 1068 (2012)]

2010年:石墨烯孔

● M. Drndic: 孔厚1-5 nm, 孔径5-10 nm 离子流噪音大大增加

[C. A. Merchant et al., Nano Lett., 10, 2915 (2010)]

● C. Dekker: 石墨烯单层, 孔径22 nm

[G. F. Schneider et al., Nano Lett., 10, 3163 (2010)]

● J. A. Golovchenko: 孔厚0.6-10 nm _____ 孔径2.4-5 nm

A Contraction of the second se

[S. Garaj et al., Nature, 467, 190 (2010)]

单链DNA更容易吸附在石墨烯上

三、理论与模拟研究

高分子穿越纳米孔是典型的非平衡态动力学问题

高分子在受限空间中的平衡链构象和非平衡态动力学

P. G. de Gennes 1991年诺贝尔物理学奖 M. Muthukumar, M. Kardar, A. Y. Grosberg,
K. Binder, J. F. Joanny, M. Rubinstein,
J. J. de Pablo, G. W. Slater

高分子穿越纳米孔中的理论问题

- 高分子穿越纳米孔的输运动力学还不清楚 即便是对跨膜电场下穿越固体孔的输运动力学还有争议,其他驱 动机理下的动力学还没有研究。
- DNA与纳米孔之间的相互作用以及序列结构对输运过 程的影响一直被忽略

DNA或RNA穿越蛋白质孔与固体孔是否有差别;不同碱基的均 聚物与不同碱基序列的共聚物穿越蛋白质孔出现差别的原因尚不 清楚。

基于高分子理论来理解生命体系中的大分子输运问题 还没有引起重视

蛋白质通过膜通道是在分子伴侣辅助下完成,DNA在病毒衣壳里 的组装是在分子马达作用下进入受限空间。

平衡自由能理论

[Sung & Park *PRL*, 77, 783 (1996); Muthukumar *JCP*, 111, 10371 (1999)] <mark>假定</mark>:

- •无限长的Gaussian链(无排除体积效应)
- •无限薄的膜和窄的孔
- •考虑熵障碍,忽略高分子与孔的相互作用
- •链处于准平衡态(跨膜输运非常慢)

穿越过程中链的自由能: $F(s) = (1 - \gamma)k_BT \ln[(N - s)s] + s\Delta\mu$

平衡自由能理论

$$\frac{\partial p}{\partial t} + \frac{\partial j}{\partial s} = 0$$
$$j = -D\left(\frac{\partial p}{\partial s} + \frac{p}{k_B T}\frac{\partial F}{\partial s}\right)$$

Fokker-Planck 方程 Kramers' problem!

Sung (PRL, 77, 783, 1996)

Muthukumar (JCP, 111, 10371, 1999)

基于高分子bead-spring模型的 Langevin dynamics (LD)

[M. P. Allen, D. J. Tildesley, Computer Simulation of Liquid (Oxford Univ. Press, 1987)]

Equation of motion is given by $m\ddot{\mathbf{r}}_i = -\nabla(U_{\text{LJ}} + U_{\text{FENE}}) + \mathbf{F}_{\text{ext}} - \xi \mathbf{v}_i + \mathbf{F}_i^R$ $U_{\text{LJ}}(r) = 4\varepsilon[(\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^6]$ LJ势 $U_{\text{FENE}}(r) = -\frac{1}{2}kR_0^2\ln(1 - r^2/R_0^2)$ FENE势

能量尺度 ε 长度尺度 σ . 时间尺度 $t_{LJ} = (m\sigma^2/\varepsilon)^{1/2}$ 力的尺度 ε/σ

(一)建立了输运时间与链长、驱动力、孔尺寸等参数之间的标度关系

利用理论解析与数值模拟验证相结合,研究了高分子在 不同驱动机理下穿越纳米孔的输运动力学:

- 无外场
- 有外场
 - (1) 以恒力拉高分子链末端(光镊,带电或中性高分子)
 - (2) 流动场 (带电或中性高分子)
 - (3) 跨膜电场 (带电高分子如DNA等)

输运时间与链长的标度关系: $\tau \sim N^{\alpha}$

这里 α 为标度指数,N为链长度。

无外场作用下的跨膜输运时间
 以前的理论用平衡自由能处理非平衡问题:要求 τ>τ_r~N^{1+2ν}=N^{2.18}
 解Fokker-Planck方程所得结果: τ~N²。与假定不自洽
 [M. Muthukumar J. Chem. Phys. 1999, 111, 10371]

Luo* et al. J. Chem. Phys. 2006, 124, 034714

不同驱动机理下的输运时间 $L(F) = R \phi\left(\frac{R}{\zeta}\right) \quad \zeta = k_B T / F$ $L(F) \sim N^{2\nu} \sigma \frac{F\sigma}{k_B T}$ $L(F) \sim N \sigma \left(\frac{F\sigma}{k_B T}\right)^{(1/\nu)-1}$ (1) 以恒力拉高分子链末端 预言三个动力学区: $\tau \sim \frac{L(F)}{v(F)} \sim \begin{cases} N^{1+2\nu} & (F < k_B T/N^{\nu}\sigma) \\ N^2 F^{1/\nu-2} & (k_B T/N^{\nu}\sigma \le F \le k_B T/\sigma) \\ N^2 F^{-1} & (F > k_B T/\sigma) \end{cases}$ $L(F) \sim N\sigma$ 10000 (a) Regime 1 Regime 2 1000 Slope=-0.67±0.03 5 Regime 3 Slope=-0.84±0.01 100 F 0.1 10 F ...Luo* et al. Phys. Rev. E 2007, 75, 061912

(2) 流场作用下的高分子输运

✓ 推导了大分子完全进入长纳米通道的时间:

$$CR^{-1/3}\xi s(t)\frac{ds(t)}{dt} = s(t)F \longrightarrow \mathcal{T} \sim \frac{N}{F}R^{-\frac{1}{3}}$$

Luo* et al. J. Chem. Phys. 2011, 134, 135102

✓预言大分子穿越不同长度纳米通道的时间:

$$\tau \sim \frac{R_g + L}{v} = \begin{cases} N^{1+v} & (L << R_g) \\ L & (L >> R_g) \end{cases}$$

... Luo* Soft Matter 2012, 8, 2769

(3) 跨膜电场作用下的输运时间

Luo* et al. J. Chem. Phys. 2006, 124, 114704; 2007, 126, 145101 Luo et al. Phys. Rev. E 2008, 78, 050901(R) Luo* et al. Phys. Rev. E 2009, 80, 021907 Luo* et al. Europhys. Lett. 2009, 88, 68006 ...Luo* et al. J. Chem. Phys. 2006, 125, 124901

创新点:建立了不同驱动机理下跨膜输运时间与大分子链长度 等相关参数之间的标度关系。

(二)揭示了大分子与纳米孔之间的相互作用以及 序列结构对输运过程的影响

(1) 大分子与纳米孔之间的相互作用对输运过程的影响

[G. D. Smith et al. J. Chem. Phys. 2003, 119, 11475]

(1) 大分子与纳米孔之间的相互作用对输运过程的影响

Translocation times

(1) 大分子与纳米孔之间的相互作用对输运过程的影响

创新点:

- (1) 碱基A与纳米孔之间的相互作用比C强,导致穿越时间变慢且分布变宽, 解释了穿越蛋白质孔时Poly(dA)₁₀₀与Poly(dC)₁₀₀的差别。
- (2) 澄清了文献上认为吸引相互作用导致输运加快的错误认识。
- (3) 碱基与蛋百质孔之间的相互作用强,导致输运时间与链长成正比,解释 了DNA穿越生物孔的实验结果。

Luo* et al. Phys. Rev. Lett. 2007, 99, 148102 Luo* et al. Phys. Rev. E 2008, 78, 061918

(2) DNA序列结构对跨膜输运动力学影响

他人的实验结果: Poly(dA₅₀dC₅₀)比 Poly(dAdC)₅₀穿越时间更长且呈长尾 分布 [D. Branton *et al. PNAS* 2000, *97*, 1097] 我的研究目标: Poly(dA_ndC_n)_{128/2n}固定DNA长度,改变碱基序列

预言通过测量相邻两个碱基通过纳米孔的 时间间隔的分布可以读出特定DNA的序列

Luo* et al. Phys. Rev. Lett. 2008, 100, 058101 Luo* et al. Phys. Rev. E 2008, 78, 061911

(三) 阐明了分子伴侣辅助下的跨膜输运动力学

蛋白质通过膜通道是在分子伴侣辅助下完成的 以前的理论把蛋白质粗粒化成刚性棒的处理不合理

理论分析:有效驱动力 $F_{driving} = F_{bind}(s,c_0,\varepsilon) - F_{trans,e}(s,c_0,\varepsilon) - F_{cis,e}(s)$ $F_{bind}(s) = \ln\left[1 + c_0 v_0 \exp\left[\frac{\varepsilon}{k_B T}\right]\right]$ c_0^{\uparrow} or ε^{\uparrow} , $F_{bind}(s,c_0,\varepsilon)^{\uparrow}$ $F_{trans,e}(s,c_0,\varepsilon)^{\uparrow}$

对于柔性链, 熵抵抗力重要

分子伴侣作用下链更容易折叠

模拟结果证实理论分析

... Luo* J. Am. Chem. Soc. 2011, 133, 13565

- 建立了跨膜输运时间与链长、驱动力、孔尺寸等参数之 间的标度关系,预言了实验结果。
- 揭示了大分子与纳米孔之间的相互作用以及序列结构对 跨膜输过程的影响,解释了实验现象,澄清了文献上的 错误报道。
- 阐明了分子伴侣辅助下的跨膜输运动力学,对理解蛋白 质通过膜通道具有重要意义。

恳请批评指正!