Lecture 34
Higher-order Gaussian Beams 

We obtained the Gaussian beam solution as an exact solution to the paraxial wave equation by starting with a spherical wave, which we know is an exact solution to the full Helmholtz equation, and applying the paraxial (Fresnel) approximation to it. However, this turns out to give only the lowest-order solution of a whole family of possible solutions.

A general approach to solve the paraxial wave eqn. is to start with solutions of the form 
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Plug into the paraxial wave eqn. and obtain differential equation for A(z) and q(z).

This approach is carried out in detail in Siegman sec. 16.4 and Haus appendix S. We don’t have the time to carry out the solution, but it is important to note the final results for future reference. The two most common forms of the general solution are:

(i) Hermite-Gaussians, most useful when rectangular coordinates are the most relevant , and 

(ii) Laguerre-Gaussians, most useful in systems with cylindrical symmetry 

Hermite-Gaussian solution:
The general form of the solution 
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 is then 
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~ (Hermit polynomials)
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(Gaussian).

It is important to note that the complex radius q(z) still satisfies 
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The full expression is given in Siegman eqn. 16-54 or 17-40(see handout).

(note that our 
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 is basically Siegman’s 
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Here it will suffice to note that the low-order Hermite polynomials are 
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 (this yields our lowest-order Gaussian beam )
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For plots of these, see Siegman fig.17.19

Note that the arguments of the Hermite polynomials in the 
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 are scaled to
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, which means that the shape of the beam does not change with propagation, only its size does.

e.g. 
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 looks like a zero-order Gaussian in y , and a 
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 order Hermitz-Gaussian in x , for all z :
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Gouy effect:  the n-
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 Hermite-Gaussian 
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 contributes an excess phase
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Where 
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 just as before.

Thus higher order Hermite-Gaussian has a larger excess phase.

(One of the most important physical consequences of this is that the transverse modes of lasers oscillate at slightly different frequencies; thus multi-transverse-mode lasers exhibit “mode-beating.”)

Theorem: The Hermite-Gaussian solutions form a complete set of orthonormal functions.

This means that any electric field at some plane z can be written as 
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This could be used to solve arbitrary diffraction problems (within the paraxial approximation, of course).
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The complicated diffraction pattern on the observation screen is, in this picture, just the consequence of all the different phase shifts (n+m+1)
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In practice, this approach is useful only in limited situations, where only a few modes must be kept.

Laguarre-Gaussian modes

· Write paraxial wave eqn. in cylindrical coordinates 
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solution 
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(Laguarre polynomial)
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(Gaussian)

-see Siegman fig.17.21 for representative plots

(note that this set of solutions also forms a complete orthonormal set )

Diffraction: Integral Approach
We shall shortly see how an integral solution to the Helmholtz equation can be obtained, but before doing so, it is worthwhile to consider diffraction from a different point of view, namely that of Huygen’s Principle.

Huygen’s Principle

Every point on a wavefront can be considered to be a source of a spherical wave (Huygen’s wavelet). The envelope of the wavelets gives the wavefront at a later time.
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(See Guenther P.326 for a simple derivation of the laws of reflection and refraction from this principle.)
Huygen’s Principle is usually applied to diffraction problems in the following simple way. Suppose we know the (scalar) optical field E(x, y) over some aperture in a plane 
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 (see diagram).The basic idea is to consider each point in the aperture to be a source of Huggen’s wavelets. The total field at an observation point P is just the sum (integral) of all the wavelets!
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Roughly speaking, the 
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element in the aperture contributes a field 
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 to the total field in
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, and radiates a Huggens spherical wave 
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Now, again we crudely say that the total field at P is the sum of all the elements j in
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. Of course we take the continuum limit so the sum goes over into an integral 
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In fact, this expression would be correct if we just put a factor 
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 in front of the integral. We shall see below in a “rigorous” treatment of the problem how this factor arises. Here it will suffice to note that 
1. The “I” comes essentially from the Gury phase shift 
2. The “
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” factor has no “a priori” interpretation – but might be thought it as: source strength ~field per wavelength 
Thus 
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This is known as the Huygens-Fresnel integral. The physical idea behind it is quite simple and important to remember (!), but our argument is at best only a plausibility argument. Our next job is to provide some proof that indeed this does represent a valid solution to the problem.
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Fresnel – Kirchhoff Theory 
The goal is to find a solution to the Helmholtz eqn.
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Where the (scalar) electric field is 
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(i.e. we consider a pure time-harmonic wave ).

¤Note slight change in notation / meaning of 
[image: image50.wmf]y

- it’s the scalar field amplitude not a slowly varying envelope 
Of course, since Helmholtz’s eqn. is linear, we can find solutions for waves more complicated than simple harmonic (i.e. for wave groups) by linear superposition of the pure-harmonic solutions.

Huygen’s Principle says we should be able to find the field at any point 
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 given some initially known wave. The mathematical statement of this idea can be given starting from Green’s theorem, which is obtained from Gauss’s theorem familiar from vector calculus in the following way.
Gauss’s theorem. 
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Where 
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= vector function (nonsingular in V)

       S = surface enclosing volume V

Let  
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We could just as well let
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Subtracting the two yields Green’s theorem 
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This is often written in a slightly different way, using 
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unit normal to surface S )
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The general problem: suppose we know 
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  on some surface S. Given
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 on S, we want to know 
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 at some point 
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 inside S. 
(
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= solutions of Helmholtz’s eqn. in V)
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V = volume bounded by S on outside and 
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on inside.
Let 
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 measured from
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This is our “Green’s function.” It is clearly a spherical wave centered on
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.
In volume V, the field has no sources =>
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 (integral over total surface bounding V )
(*)  
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First consider the integral over 
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= small sphere of radius 
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 centered on
[image: image80.wmf]0

P

:

[image: image81.wmf]0101

0101

ikrikr

SS

ee

dsds

nnnrrn

ee

yjj

jyj

-×-×

éù

æö

¶¶¶¶

æö

-=-

êú

ç÷

òòòò

ç÷

ç÷

¶¶¶¶

èø

êú

èø

ëû

uuruur

rr


Now 
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If we are on
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, and we can introduce the solid angle element 
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Then   


[image: image87.wmf](

)

2

2

1

)1

ik

ikik

SS

ike

ediked

nn

ee

e

ee

jj

jeeje

eee

-

--

æö

¶¶

éù

+-W=+-W

òòòò

ç÷

êú

¶¶

ëû

èø


Now let 
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 shrinks to an infinitesimal volume around
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Thus we have ,from (*)　Ｐ．３５７，　
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This is the Helmholtz-Kirchhoff integral theorem. 

It says we know the field at 
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 given its value (and thus its derivative 
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 also) on any surface S containing
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Now suppose we have a point source at
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 , and we want the field at 
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, but there is an opaque screen containing an aperture between them:
We take our surface S enclosing 
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 to be as shown:
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