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Abstract

A loop structure was predicted to exist in the Bloch bands of Bose—Einstein condensates in optical lattices recently in [Phys.
Rev. A 61 (2000) 023402]. We discuss how to detect experimentally the looped band with an accelerating optical lattice through
extensive and realistic numerical simulations. We find that the loop can be detected through observing either nonlinear Landau—
Zener tunneling or destruction of Bloch oscillations.

0 2003 Elsevier B.V. All rights reserved.
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1. Introduction in this system, considering the rich physics that we
have known in the condensed-matter physics, where

The simple system of Bose—Einstein condensatesthe prototype system is electrons in a crystal lattice.

(BECs) in optical lattices is of amazingly rich physics, . One Very surprising finding for the system of BECs

as shown in recent theoretical and experimental stud- in optical lattices is the .Ioop structure appgared in the
ies. With certain choices of densities of BEC and Bloch bands as found in Ref. [10] (see Fig. 1). This

strengths of optical lattice, this system exhibits vari- finding was later confirmed in further theoretical stud-

ous interesting phenomena, ranging from the dynam- fs [6’11‘12]‘ Thi?’ unuiuql a?d unique loop s.tru.ctur(?
ics of BEC Bloch waves [1-6], Josephson effect [7], as very interesting physical consequences: First, it

squeezed states [8], and quantum phase transition be_!eads to the nonlinear Landau—Zener tunneling that

tween superfluidity and Mott-insulator [9]. One can 'S characteristically different from the linear Landau—

only expect more interesting physics to be discovered £€N€r tunneling [13], in particular, the nonzero tun-
neling in the adiabatic limit [10]. Second, it destroys

Bloch oscillations [2,6,11].
* Corresponding author. Howevgr, experimentql exploration of .this looped
E-mail address: choi@milkyway.gsfc.nasa.gov (D.-I. Choi). band and its related physical phenomenais yetto come
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Fig. 1. Two lowest Bloch bands of a BEC in an optical lattice when
C > V. The energy is in units of/k2 /m and the wave numbér

in units of Z; , wherek;, is the wave number of the laser light that
generates the optical lattice.

forth. To our judgment, this experimental stalemate
does not come from the lack of experimental tech-
nigues; it is the lack of enough theoretical guidance.
On the one hand, it is not clear what signals to look for
in an experiment to confirm the existence of the loop

structure. On the other hand, one may be concerned
that the unavoidable inhomogeneity of the BEC used ¥ (x)
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no trapping potential. These experiments can be well
described by the mean-field Gross—Pitaevskii equation
in one dimension
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wherem is the atomic masg;, is the wave vector of
the laser light that generates the optical latticejs
the s-wave scattering length between atomss the
acceleration, and/ is the strength of the potential
which is proportional to the laser intensity. In our
calculations, Gaussian functions are used to simulate
the inhomogeneous BECs loaded in optical lattices
in the real experiments. Strictly, the lateral expansion
of the BEC has certain effects on the longitudinal
motion [15]. In this Letter we only consider the
case where the lateral motion is negligible [1]. In
experiments, another possible setup for quasi-one-
dimensional dynamics is to confine the lateral motion
[16,17].

Without the acceleratiorny = 0, the system be-
comes a nonlinear periodic system for which we can
define Bloch waves as for a linear periodic system

@)

=eF Y (v),

in a real experiment may wash away all the interesting where vy, is periodic, ¥ (x + 7/k) = ¥ (x). The

physics since the predicted loop structure and its re-

Bloch state satisfies

lated physics is based on the analysis of homogeneous

BECs.
The purpose of this Letter is to dismiss these

concerns. Based on extensive numerical calculations,
we argue that one can confirm the existence of the

loop structure in an experiment that involves dragging
a high density BEC with an accelerating optical lattice.
Similar experiments with low density BECs [5] or
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The eigenenergies (or more precisely, the chemical po-
tentials) (k) then form Bloch bands in the Brillouin

+ TARZS

cold-atoms [14] have been carried out to observe zone. As shown in Fig. 1, when the interaction be-

Bloch oscillations and Landau—Zener tunneling. As
we will see later, there are two ways to look for the
signs of the loop structure: the destruction of Bloch

tween atoms gets larger than a certain critical value,
a loop structure is formed in the Bloch bands.
In the following, we first briefly describe our nu-

oscillations and the observation of nonlinear Landau— merical methods. Then, we present our numerical re-

Zener tunneling that shows a very distinct behavior
from the well-known Landau—Zener tunneling.
We focus on the experimental situations similar to

sults on nonlinear Landau—Zener tunneling and Bloch
oscillations, and explain how to look for signs of the
loop structure through these two phenomena. In the

what is described in Refs. [5,7,14], where a realized end, we discuss the relevance of our results to the ex-

BEC is loaded into an optical lattice and there is

periments.
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2. Numerical method

For the convenience of numerical calculations, we
cast Eq. (1) into a dimensionless form

¢ 1029

i—:———+VCOS<x—:—Lat >¢+C|¢| ?,
ot X

(4)
where we have used the following set of scaled
variables,

. 4hk? 2
F=2kx, F=—Li  G=—2a,
m 8h ky
W m Vi Tnods
pliape— = 5. 570 = )
/70 4h?k? k2

with ng being the peak density of the BEC cloud. In
writing down Eq. (4), we dropped the tildes (replacing
X by x, etc.) without causing confusion. We use the
Crank—Nicholson method for the numerical solution
of Eq. (4). This method preserves the unitarity of
the time-evolution, and yields good convergence of
the solutions for moderate values of the coupling
strengthC. Note that for the experiment where the
lateral motion is confined; has different definitions,
see one example in Ref. [17].

In many experiments [4,5], a BEC cloud has a
typical size of order 10 pm, covering 100—200 wells of
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probability no longer depends on the sweeping rate
exponentially (sweeping rate is the acceleration for
the system of a BEC in an accelerated lattice). More-
over, in the adiabatic limit where the acceleration ap-
proaches zero, the tunneling probability approaches a
finite value, instead of zero as in the linear case. This
nonzero tunneling probability in the adiabatic limit is
the direct result of the loop structure: when a Bloch
state is driven to the edge of the loop, it has to split, re-
sulting in tunneling [10]. Therefore, experimental ob-
servation of this adiabatic tunneling, along with the
nonexponential dependence of tunneling probability
on the acceleration, can be viewed as a direct evidence
of the looped band.

However, the analysis in Ref. [10] is based on a
simplified two-level model derived with the assump-
tion of homogeneity of BEC. This may leave experi-
mentalists wonder whether the unique characteristics
of nonlinear Landau—Zener tunneling can be observed
in real experiments, where BECs are inhomogeneous
and span only a finite range of space. This concern is
legitimate, but our numerical results show that the in-
homogeneity does not blur up the essential physics.

In our numerical simulations, we calculate the
tunneling probability through the separation of a BEC
cloud. As we mentioned earlier, the lattice strength
is chosen such that there is a only one band below
the well barrier. As a result, the part of a wave

an optical lattice. To model such inhomogeneous BEC packet tunneled into the upper band will not be

clouds, we use a Gaussian wave packet as the initialdragged along the lattice while the part remained in
state and then turn it into a inhomogeneous BEC Bloch the lower band will be dragged along. This leads

wave by adiabatically turning on the optical lattice.
The lattice strengtlV is taken to be smaller than
0.4 (or 3.2 in units of the recoil energy’k? /2m).

to a separation of a BEC cloud after a certain time
of acceleration. By integrating the left-behind wave
packet, we obtain the tunneling probability. This

This choice serves two purposes. First, it guaranteestechnique was actually used in experiments to measure
that there be only one bound state inside each well the tunneling probability [5,14].

so that we can use the separation of a BEC cloud to

measure the tunneling probability as we will explain

Fig. 2 shows our results of the nonlinear Landau—
Zener tunneling probability withy = 0.2 for vari-

below. Second, it means that the mean field theory (1) ous values ofC. The initial Gaussian wave packet

is a good description of the BEC system.

3. Nonlinear Landau—Zener tunneling

is ¢ (x, 1 =0) = e*/** wherew is the width of the
condensate and its typlcal values used is 325. Op-
tical lattice potential is turned on fro (x) = 0 to
V(x) =V for t < 40 to achieve an inhomogeneous
BEC Bloch wave. Then it is boosted with an acceler-

The nonlinear Landau—Zener tunneling has been ationa for two Bloch periods, and moves with a con-

studied quite extensively in Ref. [10], where it is found
to be very different from the linear Landau—Zener tun-
neling [13]. In particular, whei@ > V, the tunneling

stant velocity afterward.
In general, tunneling probability is greater for
larger C at a fixed acceleratiom, and greater for
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Fig. 2. Tunneling probability as a function of acceleratiorfor
various values o€ andV = 0.2. The case of = 0 is compared to
the exponential functior=0-96%¢ indicated by solid line without
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large accelerations: at a fixed C. For C < V,
the tunneling probability changes with acceleration
a rather exponentially and in particular, it goes to
zero whena — 0. This is exactly what is predicted
in Ref. [10]. Therefore, this result implies that the
inhomogeneity has only negligible impact on the
tunneling probability whert < V.

WhenC > V, we also do not see much impact of
the inhomogeneity of BEC: the tunneling probability
does not depend on the acceleratioexponentially
and in particular, when the data is extrapolated to the
adiabatic limita — 0, the tunneling probability seem-
ingly tends to a nonzero value. This clearly shows that
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validity of extrapolation. On the other hand, the obser-
vation of nonexponential dependence of the tunneling
probability on the acceleration will provide an unam-
biguous evidence.

4. Bloch oscillations

Bloch oscillations occur when a Bloch state is
driven across the Brillouin zone by a small external
field [14]. For a BEC in an optical lattice, Bloch
oscillations can be achieved by dragging the lattice
with a small acceleration as reported experimentally
in Refs. [5,7]. In order to observe these oscillations,
a key requirement is that the acceleration must be
small enough so that the tunneling to the upper band
is negligible. If tunneling probability into the upper
band is increased, say, by large accelerations, Bloch
oscillations can be destroyed.

What is interesting with BECs is that we have
another way to increase the tunneling probability
besides increasing the acceleration. It is to increase
the density of the BEC. Especially, as discussed in the
last section, when the density is high enough such that
C > V, there is a nonzero lower limit on the tunneling
probability as the result of the loop structure in the
energy band. In other words, no matter how small the
acceleration is, we will not be able to observe Bloch
oscillations due to the nonzero adiabatic tunneling
whenC is big enough. Therefore, the observation of
breakdown of Bloch oscillations will provide another
way to detect the loop structure.

In an experiment, one can repeat the measurements
with increasing densities of BECs for a fixed small
acceleration. One expects to observe Bloch oscilla-
tions when the density is low; as the density increases,

these two unique characteristics of nonlinear Landau— the oscillations will deteriorate and eventually be de-

Zener tunneling are not washed away by the inhomo-
geneity of the BEC cloud. The experimental observa-
tion of them will be viewed as the confirmation of the

stroyed. This is indeed the case as shown in Fig. 3 from
our simulations. In this figure, we show currents of the
condensatej = [ (7/m) Im(¢*d¢/dx)dx, as a func-

loop structure. However, since the acceleration cannottion of time in the accelerating frame for a small

be made arbitrarily small in a real experiment and our
simulations, one may argue the validity and confidence
on the extrapolation of the data to the adiabatic limit
of zero acceleration. We believe that this problem can
be partially solved by repeating the experiment with
many different densities of BECs. Consistency among
different sets of data will be a strong support of the

For C < V, Bloch oscillations are preserved during
the first Bloch period; however, faf > V, Bloch os-
cillations are disrupted and completely destroyed dur-
ing the first Bloch period. Even for the case®& V,
Bloch oscillations are seriously disrupted.

In our view, this is a much better way to detect
the loop structure shown in Fig. 1 than the method
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Fig. 3. Top panel: Currents as a function of time for various values
of C atV =0.0875 andz = 0.005. Bloch oscillations are destroyed
clearly whenC > V. Results are shown faf = 0.02, 0.0875, and

Fig. 4. Top panel: Currents as a function of time with= 0.3175
anda = 0.02. Results are shown faf = 0.2,0.3, and 04 in the

- . i accelerating frame, and we see the destruction of Bloch oscillations
0.15 in the accelerating frame. Bottom panel: The wave functions at o o\ \whenc < v, indicating that it is caused by the dynamical
different points of breakdown of Bloch oscillations, as indicated in instability. Bottom panel: Densities of the wave function(x)|2,

the top panel at = 2516 (A), 283.0 (B), 314.5 (C), and 345.9 (D). for C = 0.3 at7 = 1015 (A), 118.4 (B), 135.3 (C), and 202.9 (D).
The smoothness of the wave functions shows no signs of dynamical The “spiky” or “messy” wave functions at points C and D are the
instability, implying the destruction of Bloch oscillations is the result of dynamical instability.

result of nonlinear Landau—Zener tunneling.

discussed in the last section regarding the nonlinear on the separation of a BEC cloud will become more
Landau-Zener tunneling. With increasing densities, difficult because the higher the density the faster
the measurement of the tunneling probability based the cloud expands. This makes the separation more
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difficult. With Bloch oscillations, we do not need to
worry about this difficulty.

One caution we need to take is that there is an-
other mechanism for breakdown of Bloch oscillations,
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guirement considering the BECs of density as high as
3 x 10 cm~2 have already been achieved [18].

the dynamical instability of Bloch waves discussed Acknowledgements

in Refs. [2,6,12]. The instability will cause the sys-
tem stray away from the Bloch states with very small
amount of perturbations or noises. This is demon-

Wu was supported by the NSF and the LDRD of
ORNL, managed by UT-Battelle for the USDOE (DE-

strated in Fig. 4, where we see the destruction of Bloch AC05-000R22725).

oscillations even whefi' < V for a very small accel-
eration. The “spiky” or “messy” wavefunctions in the
bottom panel signal the onset of dynamical instability.

The dynamical instability always exists in the
neighborhood o ~ V [6,12], where the breakdown
of Bloch oscillations starts to take place. As a result,
one must make sure that the breakdown of Bloch
oscillations is the result of the loop structure, instead
of the dynamical instability. One way is to use weak
optical lattices (small values df). In this case, the
growth rates of unstable modes are small therefore
the dynamical instability will not dominate in the
first few oscillations as seen in the bottom panel of
Fig. 3. These smooth wave functions indicate that
the dynamical instability is yet to come into play.
Therefore, the destruction of Bloch oscillations in the
upper panel is purely due to the nonzero adiabatic
tunneling resulted from the loop structure.

5. Conclusion
In summary, using extensive and realistic calcula-

tions we have demonstrated experimental feasibility
to detect the loop structure in the BEC Bloch bands.

We suggested two possible scenarios: the observa-

tion of breakdown of Bloch oscillations and nonlin-
ear Landau—Zener tunneling in an accelerating lattice.
Experiments similar to what we suggest have already
been carried out with low density BECs [5], where
the corresponding coupling strength is in the range of
C = 0.026-004. The values used in our calculations
cover the range of’ = 0.05-Q3. This means that the
signatures of loop structure studied in this Letter can
be observed by increasing the density of BECs by two
to ten times. This is certainly possible with the cur-
rent experimental set-ups. The density of the BEC in
Ref. [5], 104 cm~3, can be increased to meet the re-
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