Spin Dynamics in Semiconductors M. W. Wu

Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Acknowledgements

Asso. Prof. Dr. M. Q. Weng, Dr. J. L. Cheng, Dr. J. Zhou, Mr. J. H. Jiang, Ms. Y. Y. Wang, Mr. K. Shen, and Mr. P. Zhang Experiments: Prof. Dr. C. Schüller Group (Uni. Regensburg) Prof. Dr. T. S. Lai Group from Zhongshan Univ.

Outline

- Spin relaxation/dephasing mechanisms
- Fully microscopic approach to spin kinetics
- Comparisons with experiments
- Spin kinetics far away from equilibrium
 - Spin dephasing at large spin polarization
 - Spin dephasing in the presence of high electric field
- Footprint of the Coulomb scattering in spin relaxation
- Non-Markovian spin kinetics
- Spin dynamics with strong THz fields
- Spin diffusion and transport

Spin Dephasing/Relaxation Mechanisms

- Elliot-Yafet Mechanism [Yafet, PR 85, 478 (1952); Elliot, PR 96, 266 (1954)]: Spin-flip electron-phonon and electron-impurity scattering $\propto 1/E_g^2$
- DP Mechanism [D'yakonov & Perel', Sov. Phys. JETP 38, 1053 (1971)]: $[\mu_B g {f B} + {f \Omega}({f k})] \cdot {m \sigma\over 2} \ with$
 - Dresselhaus Term (Bulk Inversion Asymmetry) $\Omega_x(\mathbf{k}) = \gamma k_x (k_y^2 - k_z^2), \ \Omega_y(\mathbf{k}) = \gamma k_y (k_z^2 - k_x^2), \ and$ $\Omega_z(\mathbf{k}) = \gamma k_z (k_x^2 - k_y^2).$
 - Rashba Term (Structure Inversion Asymmetry) $\Omega({f k}) = lpha({f k} imes {f E}) \cdot {m \sigma}$
- BAP Mechanism [Bir et al., Sov. Phys. JETP 42, 705 (75)]: Band mixing + Coulomb scattering. p-type

Spin Relaxation based on Single-Particle Approach

[Meier and Zakharchenya, *Optical Orientation* (North-Holland, Amsterdam, 1984)]

$$\frac{1}{\tau_{\rm DP}} = 8Q\gamma_D^2 m_c^3 \left(k_B T\right)^3 \tau_p$$

$$\frac{1}{\tau_{\rm EY}} = A \left(\frac{k_B T}{E_g}\right)^2 \eta^2 \left(\frac{1-\eta/2}{1-\eta/3}\right)^2 \frac{1}{\tau_p}$$

For non-degenerate holes: For degenerate holes:

$$\frac{1}{\tau_{\rm BAP}} = \frac{2}{\tau_0} n_h a_B^3 \frac{\langle v_{\mathbf{k}} \rangle}{v_B}$$
$$\frac{1}{\tau_{\rm BAP}} = \frac{3}{\tau_0} n_h a_B^3 \frac{\langle v_{\mathbf{k}} \rangle}{v_B} \frac{k_B T}{E_{Fh}}$$

Problems of Single-Particle Approach

Based on elastic scattering approximation

Incorrect at some low impurity density cases [Weng and Wu, PRB 68, 075312 (03)]

• Without carrier-carrier Coulomb scattering, Coulomb Hartree-Fock term and Pauli blocking

These are proved to be important and accepted by the community [Weng and Wu, PRB 68, 075312 (03); Zhou, Cheng, and Wu, PRB 75, 045305 (07); Zhou and Wu, PRB 77, 075318 (08); Spin Physics in Semiconductors, ed. by D'yakonov (Springer, Berlin, 08)]

 Can not study spin dynamics in system out of motional narrowing regime, in non-Markovian limit, or far away from equilibrium

These were studied via KSBE approach in [Weng, Wu, and Jiang, PRB 69, 245320 (04); Lü, Cheng, and Wu, PRB 73, 125314 (06); Zhang and Wu, PRB 76, 193312 (07); Zhang, Zhou, and Wu, PRB 77, 235323 (08); Jiang, Wu, and Zhou, PRB 78, 125309 (08)]

Kinetic Spin Bloch Approach

[Wu *et al.*, Eur. Phys. J. B **18**, 373 (00); PRB **61**, 2945 (00); **68**, 075312 (03); **69**, 245320 (04)]

$$\begin{split} &\frac{\partial\rho(\mathbf{R},\mathbf{k},t)}{\partial t} - \frac{1}{2} \big\{ \nabla_{\mathbf{R}}\bar{\varepsilon}(\mathbf{R},\mathbf{k},t), \nabla_{\mathbf{k}}\rho(\mathbf{R},\mathbf{k},t) \big\} \\ &+ \frac{1}{2} \big\{ \nabla_{\mathbf{k}}\bar{\varepsilon}(\mathbf{R},\mathbf{k},t), \nabla_{\mathbf{R}}\rho(\mathbf{R},\mathbf{k},t) \big\} \\ &= \frac{\partial\rho(\mathbf{R},\mathbf{k},t)}{\partial t} \Big|_{c} + \frac{\partial\rho(\mathbf{R},\mathbf{k},t)}{\partial t} \Big|_{s}. \end{split}$$

$$\begin{aligned} &\text{Poisson Eq.: } \nabla_{\mathbf{R}}^{2}\psi(\mathbf{R},t) = -e \big[n(\mathbf{R},t) - n_{0}(\mathbf{R}) \big] / \epsilon, \end{split}$$

where $\dot{\rho}_{\mathbf{k},\sigma\sigma'}|_{\mathsf{coh}} = -i[(g\mu_B\mathbf{B} + \mathbf{\Omega}(\mathbf{k})) \cdot \frac{\boldsymbol{\sigma}}{2} + \epsilon_{HF}(\mathbf{R},\mathbf{k}), \rho_{\mathbf{k},\sigma\sigma'}]$ Dresselhause/Rashba coupling (Inhomogeneous Broadening): $\mathbf{\Omega}(\mathbf{k}) = (\gamma k_x (k_y^2 - \langle k_z^2 \rangle), \gamma k_y (\langle k_z^2 \rangle - k_x^2), 0) / (\alpha k_y, -\alpha k_x, 0).$ Single particle theory: $\frac{1}{\tau} = \frac{\int_0^\infty dE_k (f_{k,1/2} - f_{k,-1/2}) \tau_p(\mathbf{k}) \overline{\mathbf{\Omega}^2(\mathbf{k})}}{\int_0^\infty dE_k (f_{k,1/2} - f_{k,-1/2})}$

Key Points of Kinetic Spin Bloch Approach

- In the presence of the inhomogeneous broadening, any scattering (including the spin-conserving scattering), can cause irreversible spin dephasing.
- Coulomb scattering makes very important contribution to the spin dephasing and relaxation.
 [Wu, Eur. Phys. J. B 18, 373 (00).]
 Ivchenko group [JETP Lett. 75, 403 (02)]
 Harley group [PRL 89, 236601 (02); PRB 75, 165309 (07)]
- A real non-equilibrium microscopic approach to spin kinetics:
 - Scattering ↔ Inhomogeneous Broadening
 - near and far away from the equilibrium
 - strong and weak scattering ($\Omega \tau_p \ll 1 / \Omega \tau_p > 1$)

Bloch Vector and Inhomogeneous Broadening

- Bloch Vector U(k, t): $U_1(\mathbf{k}, t) = [P(\mathbf{k}, t)e^{i\omega t} + c.c.]$ $U_2(\mathbf{k}, t) = [P(\mathbf{k}, t)e^{i\omega t} - c.c.]$ $U_3(\mathbf{k}, t) = [f_c(\mathbf{k}, t) - f_v(\mathbf{k}, t)]$
- Inhomogeneous Broadening:

$$\frac{d}{dt}\mathbf{U}(\mathbf{k},t) = \mathbf{\Omega}(\mathbf{k}) \times \mathbf{U}(\mathbf{k},t)$$

$$\mathbf{\Omega}(\mathbf{k}) = (\varepsilon_{c\mathbf{k}} - \varepsilon_{v\mathbf{k}} - \omega)\mathbf{e}_3 - \omega_R\mathbf{e}_1.$$

Faraday Rotation Angle & Spin Dephasing

FR Angle [Sham et al., PRL 74, 4698 (1995)]:

$$\Theta_{F}(\tau) = C \sum_{k} \int \mathsf{Re} \Big[\bar{P}_{k\frac{1}{2}\frac{3}{2}}(t) E^{0*}_{\mathsf{prob},-}(t-\tau) - \bar{P}_{k-\frac{1}{2}-\frac{3}{2}}(t) E^{0*}_{\mathsf{prob},+}(t-\tau) \Big] dt$$

• The irreversible spin dephasing can be described by the incoherently-summed spin coherence, T_2

$$\rho(t) = \sum_{k} |\rho_{k,\uparrow\downarrow}(t)| .$$

 The optical dephasing is described by the incoherently-summed polarization [Kuhn & Rossi, PRL 69, 977 (1992)],

$$P(t) = \sum_{k} |P_k(t)| .$$

The spin relaxation time is determined from the spin polarization,

$$\Delta N = \sum_{k} (N_{k\uparrow} - N_{k\downarrow}) \; .$$

The ensemble spin dephasing time is determined from the coherently-summed spin coherence, T_2^*

$$\rho'(t) = |\sum \rho_{k\uparrow\downarrow}|$$

http://wu.ustc.edu.cn/~mwu/

 T_1

Temperature Dependence of Spin Dephasing

[Weng and Wu, PRB 68, 075312 (2003)]

$$a = 15 \text{ nm}, n = 4 \times 10^{11} \text{ cm}^{-2}$$

Experiment

A. Malinowski et al., PRB 62, 13034 (2000)

Comparison with Experiment [Weng and Wu, Chin. Phys. Lett. 22, 671 (2005)]

Different Well Width [Weng and Wu, PRB 70, 195318 (2004)]

 $a = 17.8 \text{ nm}(\bullet)/12.7 \text{ nm}(\blacklozenge)$

$$h_{nn',x}(\mathbf{k}) = \gamma k_x (k_y^2 - \langle n | k_z^2 | n \rangle) \delta_{nn'}$$
$$h_{nn',y}(\mathbf{k}) = \gamma k_y (\langle n | k_z^2 | n \rangle - k_x^2) \delta_{nn'}$$
$$h_{nn',z}(\mathbf{k}) = \gamma \langle n | k_z | n' \rangle (k_x^2 - k_y^2).$$

 $\langle n|k_z^2|n
angle = (rac{n\pi}{a})^2$

- Jiang and Wu, PRB 72, 033311 (2005).
- Holleitner *et al.*, New J. Phys. **9**, 342 (2007).

Density Dependence of an Intrinsic GaAs QW [Teng, Zhang, Lai, and Wu, Europhys. Lett. 84, 27006 (2008)]

Lü, Cheng, and Wu, PRB 73, 125314 (2006).

Comparison with another Experiment [Zhou, Cheng, and Wu, PRB 75, 045305 (2007)]

Experiments: Ohno *et al.*, Physica E **6**, 817 (2000). Theory: Kainz *et al.*, PRB **70**, 195322 (2004).

$$a = 7.5 \text{ nm}; n = 4 \times 10^{10} \text{ cm}^{-2}$$

$$\gamma = (4/3)(m^*/m_{cv})(1/\sqrt{2m^{*3}E_g})(\eta/\sqrt{1-\eta/3})$$

$$\gamma_0 \longrightarrow m_{cv} = m_0$$

Spin Dephasing at High Spin Polarization [Weng and Wu, PRB 68, 075312 (2003)]

"Detuning" Effect from HF Term

[Weng and Wu, PRB 68, 075312 (2003)]

Longitudinal effective magnetic field from the HF term:

Experimental Realization

[Stich, Zhou, Korn, Schulz, Schuh, Wegscheider, Wu, and Schüller, PRL 98, 176401 (2007)]

Fixed Excitation and T Dependence

[Stich, Zhou, Korn, Schulz, Schuh, Wegscheider, Wu, and Schüller, PRB **76**, 205301 (2007)]

Magneto-Anisotropy of Spin Dephasing in High-Mobility GaAs [001] QW

[Stich, Jiang, Korn, Schulz, Schuh, Wegscheider, Wu, and Schüller, PRB 76, 073309 (2007)]

Hot-Electron Effect in Spin Kinetics [Weng, Wu and Jiang, PRB **69**, 245320 (2004)]

Multivalley Spin Dynamics in the presence of High Electric Fields

[Zhang, Zhou, and Wu, PRB 77, 235323 (2008)]

$$g_{\Gamma} = -0.04, \quad g_L = 1.77$$

[Shen, Weng, Wu, JAP **104**, 063719 (2008)]
 $\mathbf{h}_L(\mathbf{k}_L) = \beta(k_L^x, k_L^y, 0) imes \mathbf{\hat{n}}$
[Fu, Weng, and Wu, Physica E **40**, 2890 (2008)]

Inter-valley Electron-Phonon Scattering

[Zhang, Zhou, and Wu, PRB 77, 235323 (2008)]

Similar to multi-subband case:

- Prediction: Identical spin relaxation times for different subbands due to *inter-subband Coulomb scattering [Weng and Wu, PRB* **70**, 1953318 (2004)]
- Experimental verification: [Fang et al., Europhys. Lett. 83, 47007 (2008)]

Coulomb Scattering in Spin Dephasing [Weng, Wu and Jiang, PRB 69, 245320 (2004)]

Increase or Decrease [Lü, Cheng, and Wu, PRB 73, 125314 (2006)]

Coulomb Scattering Induced Spin Relaxation [Zhou, Cheng, and Wu, PRB 75, 045305 (2007)]

a=7.5 nm, $\gamma=\gamma_0$

Degenerate limit (Low T): $\tau_p^{ee} \propto T^{-2}$ Non-degenerate limit (High T): $\tau_p^{ee} \propto T$

Bronold et al., PRB 70, 245210 (2004).

 $T_c \sim E_F / k_B$

Experiment by Y. Ji [Ruan *et al.*, PRB 77, 193307 (2008)]

Markovian Approximation

Heavy hole-LO phonon scattering term in $\dot{\rho}_{\mathbf{k}}(t)|_{scat}$:

$$\dot{\rho}_{\mathbf{k}}(t)|_{scat}^{hp} = [A_{\mathbf{k}}(<,>)(t) - A_{\mathbf{k}}(>,<)(t)] + [...]^{\dagger}$$

$$A_{\mathbf{k}}(<,>)(t) = \frac{1}{\hbar^2} \int_{-\infty}^{t} d\tau \sum_{\mathbf{Q}} g_{\mathbf{Q}}^2 (N^{>} e^{i\omega_0(t-\tau)} + N^{<} e^{-i\omega_0(t-\tau)})$$
$$\times e^{-\frac{i}{\hbar}(E_{\mathbf{k}-\mathbf{q}}-E_{\mathbf{k}})(t-\tau)} \rho_{\mathbf{k}-\mathbf{q}}^{<}(\tau) \rho_{\mathbf{k}}^{>}(\tau)$$

Markovian approximation:

$$\int_{-\infty}^{t} d\tau e^{i\omega(t-\tau)} u(\tau) \approx \pi \delta(\omega) u(t)$$

- $u(\tau) \rightarrow u(t) \Longrightarrow$ Time localization
- $\delta(\omega) \Longrightarrow$ Energy conservation

Non-Markovian Kinetics in *p*-type GaAs QW [Zhang and Wu, PRB 76, 193312 (2007)]

BAP Mechanism from KSBE Approach [Zhou and Wu, PRB 77, 075318 (2008)]

- $[2\tau_{\mathsf{BAP}}^1(\mathbf{k})]^{-1} = 2\pi \sum_{\mathbf{k}',\mathbf{q}} \delta(\varepsilon_{\mathbf{k}-\mathbf{q}}^e \varepsilon_{\mathbf{k}}^e + \varepsilon_{\mathbf{k}'}^h \varepsilon_{\mathbf{k}'-\mathbf{q}}^h) |M(\mathbf{K}-\mathbf{q})|^2 [(1-f_{\mathbf{k}'}^h)f_{\mathbf{k}'-\mathbf{q}}^h].$
- KSBE Approach:

Experimental verification: [Yang et al., arXiv:0902.0484]

Manipulation of Spin by Strong THz Fields

Without dissipation

2DEG with Rashba

• SOC [Cheng and Wu, APL 86, 032107 (2005)].

• 2DHG

[Zhou, Physica E 40, 2847 (2008)].

• QDs [Jiang, Weng, and Wu, JAP 100, 063709 (2006)].

- With dissipation:
 - QDs [Jiang and Wu, PRB 75, 035307 (2007)].

• 2DEG [Jiang, Wu, and Zhou, PRB 78, 125309 (2008)].

Quasi-Independent Electron Model

Most of the theoretical works are based on quasi-independent model and focused on the diffusive transport regime [Schmidt et. al., PRB 62, R4790 (2000); Žutić et al., PRB 64, 121201 (2001); PRL 88, 066603 (2002)]:

Diffusive transport equation

$$\frac{\partial n_{\sigma}(\mathbf{R},t)}{\partial t} - \frac{1}{e} \nabla \cdot \mathbf{J}_{\sigma}(\mathbf{R},t) = -\frac{n_{\sigma}(\mathbf{R},t) - n_{0}(\mathbf{R},t)}{\tau_{s}}$$

 $\mathbf{J}_{\sigma}(\mathbf{R},t) = n_{\sigma}(\mathbf{R},t)e\mu\mathbf{E} + D\nabla n_{\sigma}(\mathbf{R},t) \qquad \mu - \frac{1}{2}$

 μ — electron mobility

D — electron diffusion constant au_s — spin relaxation time

Stationary solution for E = 0:

$$\Delta n(x) = \Delta n(0) e^{-x/\lambda_s}; \lambda_s = \sqrt{D\tau_s}$$

Whether the quasi-independent electron model is adequately account for the experimental results or many-body process is important?

Kinetic Spin Bloch Equations

[Weng and Wu, PRB 66, 235109 (2002); JAP 93, 410 (2003)]

$$\begin{split} \frac{\partial \rho(\mathbf{R}, \mathbf{k}, t)}{\partial t} &- \frac{1}{2} \big\{ \nabla_{\mathbf{R}} \bar{\varepsilon}(\mathbf{R}, \mathbf{k}, t), \nabla_{\mathbf{k}} \rho(\mathbf{R}, \mathbf{k}, t) \big\} \\ &+ \frac{1}{2} \big\{ \nabla_{\mathbf{k}} \bar{\varepsilon}(\mathbf{R}, \mathbf{k}, t), \nabla_{\mathbf{R}} \rho(\mathbf{R}, \mathbf{k}, t) \big\} = \frac{\partial \rho(\mathbf{R}, \mathbf{k}, t)}{\partial t} \Big|_{c} + \frac{\partial \rho(\mathbf{R}, \mathbf{k}, t)}{\partial t} \Big|_{s} \\ \rho_{\sigma\sigma}(\mathbf{R}, \mathbf{k}, t) &= f_{\sigma}(\mathbf{R}, \mathbf{k}, t) - \text{distribution function} \\ \rho_{\sigma-\sigma}(\mathbf{R}, \mathbf{k}, t) - \text{spin coherence} \end{split}$$

$$\bar{\varepsilon}_{\sigma\sigma'}(\mathbf{R},\mathbf{k},t) = \frac{k^2}{2m^*} \delta_{\sigma\sigma'} + \left[g\mu_B \mathbf{B} + \mathbf{\Omega}(\mathbf{k})\right] \cdot \frac{\boldsymbol{\sigma}_{\sigma\sigma'}}{2} - e\psi(\mathbf{R},t) + \Sigma_{\sigma\sigma'}(\mathbf{R},\mathbf{k},t)$$

Scattering free solution:

$$\rho_{\mathbf{k}}(x) = e^{-\frac{im^*}{2}x\boldsymbol{\sigma} \cdot [g\mu_B \mathbf{B} + \mathbf{\Omega}(\mathbf{k})]/k_x} \rho_{\mathbf{k}}(x=0) e^{\frac{im^*}{2}x\boldsymbol{\sigma} \cdot [g\mu_B \mathbf{B} + \mathbf{\Omega}(\mathbf{k})]/k_x}$$

Inhomogeneous Broadening (Transport): $[g\mu_B \mathbf{B} + \mathbf{\Omega}(\mathbf{k})]/k_x$

Simplified Kinetic Equation

 $x (\mu m)$

http://wu.ustc.edu.cn/~mwu/

15

0.5

Spin Diffusion in Si/Ge Quantum Well

[Zhang and Wu, PRB 79, 075303 (2009)]

[Appelbaum et al., Nature 44, 295 (2007); PRL 99, 177209 (2007)]

Spin Oscillations along the Diffusion in the absence of Magnetic Field

[Weng and Wu, JAP 93, 410 (2003); PRB 69, 125310 (2004)]

The inhomogeneous broadening [Cheng and Wu, JAP 101, 073702 (2007)]: $\pi^2 = k_u (\pi^2 - k_u) \pi^2$

$$\Omega(\mathbf{k})/k_x = \gamma(-\frac{\pi}{a^2} - k_y^2, \frac{\kappa_y}{k_x}(\frac{\pi}{a^2} - k_x^2), 0) \ .$$

Experiment Realization

- It was originally predicted that the spin oscillation and spin reverse along the direction of spin diffusion in the absence of the applied magnetic field in quantum wells at high temperature (~ 200 K) by Weng and Wu [J. Appl. Phys. 93, 410 (2003); Phys. Rev. B 69, 125310 (2004)];
- This behavior has been reproduced later by Monte Carlo simulations by Pershin [Y. V. Pershin, PRB 71, 155317 (2005)];
- The above phenomena were observed by Crooker and Smith in a recent experiment at bulk GaAs at a very low temperature (4 K) [PRL 94, 236601 (2005)].

Electric Field Dependence in the Steady

State

[Cheng and Wu, JAP 101, 073702 (07)]

[Beck et al., Europhys. Lett. 75, 597 (06)]

Without cubic Dresselhaus term, infinite injection length is obtained when

- Spin Injection direction is along (-110), *i.e.*, $\theta = 3\pi/4$, regardless of the spin polarization direction
- Spin Polarization is along \hat{n}_0 , *i.e.*, (110), regardless of the direction of spin injection

Spin Relaxation with Transient Spin Grating [Weng, Wu, and Cui, JAP 103, 063714 (2008)]

[Cameron *et al.*, PRL **76**, 4793 (96); Weber *et al.*, Nature **473**, 1330 (05)]

$$\Gamma_q = 1/\tau_q = D_s q^2 + 1/\tau_s \qquad L_s = \sqrt{D_s \tau_s}$$

Comparison with Experiments

[Weber et al., PRL 98, 076604 (2007)]

• Bulk III-V Semiconductors

Comparison with Experiments: *n***-type GaAs**

[Jiang and Wu, arXiv:0812.0862]

Experimental data
Blue curve: DP spin relaxation time from our calculation
Green curve: EY spin relaxation time from our calculation

n-GaAs $\gamma_{\rm D} = 8.2 \text{ eV} \cdot \text{\AA}^3$

 $N_i = n_e = 10^{16} \text{ cm}^{-3}$

[Kikkawa and Awschalom, PRL 80, 4313 (98)]

- Our calculation agrees well with experiments in the metallic regime.
- Deviation in low temperature regime is due to the localization of electrons.

Comparison with Experiments: *p***-type GaAs**

10³

 10^{2}

100

 τ (bs)

[Jiang and Wu, arXiv:0812.0862]

 $n_i = n_h = 6 \times 10^{16} \text{ cm}^{-3} \text{ and } T = 100 \text{ K}$ [Seymour *et al.*, PRB 24, 3623 (81)] T (K) $n_i = n_h = 1.6 \times 10^{16} \text{ cm}^{-3}$ and $N_{\text{ex}} = 10^{14} \text{ cm}^{-3}$ [Zerrouati *et al.*, PRB 37, 1334 (88)]

200

150

http://wu.ustc.edu.cn/~mwu/

(c)

250

300

Prediction and Realization in *n***-GaAs** [Jiang and Wu, arXiv:0812.0862]

Peak in metallic regime: Krauß et al., arXiv:0902.0270 Peak associated with Mott transition: Dzhioev et al., PRB 66, 245204 (02)

Previous Understandings of Spin Relaxation in Bulk III-V Semiconductors

- EY mechanism dominates at low temperature in narrow bandgap semiconductors.
- BAP mechanism dominates at low temperature in heavily *p*-doped semiconductors.
- DP mechanism dominates other regimes.
- Spin relaxation time decreases with temperature/density monotonically in *n*-type semiconductors in metallic regime.
- Spin relaxation time decreases with temperature/hole-density monotonically in *p*-type semiconductors in metallic regime.

Summary of our KSBE Investigation [Jiang and Wu, arXiv:0812.0862]

- Important Predictions:
 - A peak in density dependence of spin relaxation time in metallic regime in both *n*-type and intrinsic semiconductors;
 - A peak in temperature dependence in intrinsic semiconductors at small spin polarization;
 - A peak in hole density dependence in *p*-type semiconductors due to density dependence of screening;
 - Spin lifetime increases with initial spin polarization in intrinsic semiconductors at low temperature and/or high excitation density;
 - Higher electric field always lead to shorter spin relaxation time in *n*-type III-V semiconductors;
- EY mechanism is found to be less important than DP mechanism, even for narrow band-gap semiconductors, such as, InSb and InAs;
- BAP mechanism is not important in intrinsic semiconductors;

- Relative importance of BAP mechanism decreases with photo-excitation density and eventually becomes negligible;
- In *p*-type III-V semiconductors, BAP mechanism dominates spin relaxation in low temperature regime only when photo-excitation density is low, while it is not important when photo-excitation density is sufficiently high.

Thank You!

