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Berry connection in atom-molecule systems
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In the mean-field theory of atom-molecule systems, where bosonic atoms combine to form molecules, there
is no usual U(1) symmetry, presenting an apparent hurdle for defining the Berry phase and Berry curvature for
these systems. We define a Berry connection for this system, with which the Berry phase and Berry curvature
can be naturally computed. We use a three-level atom-molecule system to illustrate our results. In particular,
we have computed the mean-field Berry curvature of this system analytically, and compared it to the Berry
curvature computed with the second-quantized model of the same system. An excellent agreement is found,
indicating the validity of our definition.
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I. INTRODUCTION

In 1984, Berry discovered that in the adiabatic evolution of
a quantum system, besides the dynamics phase, there exists
an additional phase accompanying the evolution and this
phase depends only on the geometric path in the parameter
space [1]. This geometric phase, now called the Berry phase,
along with the corresponding Berry curvature, has found wide
applications in condensed matter physics [2,3] and important
uses in the implementation of quantum computing gates [4,5].
Recently, the Berry phase has been generalized to nonlinear
quantum system, such as the Bose-Einstein condensates
described by the nonlinear Schrödinger equations [6]. This
generalization is possible because of the well-known fact that
quantum systems mathematically have a classical Hamiltonian
structure [7,8].

A recent development in the field of ultracold atoms is to
use Feshbach resonances [9] or a stimulated optical Raman
transition [10,11] to convert two atoms into a molecule.
This kind of atom-molecule systems can be well described
by a mean-field theory and can become nonlinear systems
when both the atoms and the molecules are bosons and the
number of particles in this system is large. As nonlinearity can
cause the breakdown of the adiabatic process, there has been
great interest in the adiabatic evolution of the atom-molecule
systems [12–17]. Naturally, there are also efforts to try to study
the Berry phase in this type of systems [18]. It is not trivial
to define the Berry phase in these atom-molecule systems: the
mean-field Hamiltonian of these systems contains terms of
the form ψ∗

e ψaψa , which obviously does not have U(1) gauge
invariance; this lack of U(1) invariance poses a difficulty in
defining the Berry phase. In Ref. [18], the authors managed
to circumvent the difficulty and defined Berry phase for these
atom-molecule systems. However, it is not clear how the Berry
connection and, therefore, the Berry curvature can be defined
with their approach. It is also not clear how the mean-field
Berry phase defined in Ref. [18] is related to the Berry phase
for the second-quantized model of the system, which can be
defined without any ambiguity.

In this paper, we show a Berry connection can be defined in
the mean-field theory of the atom-molecule systems. With this

Berry connection, the Berry phase and Berry curvature can be
computed in the usual way. In particular, to show the validity
of our definition, the Berry curvatures computed as such are
compared to the Berry curvatures for the second-quantized
model. This is done both analytically and numerically.
Although our approach is general, we choose to use a three-
level atom-molecule system [19,20] as an example to illustrate
our results.

The paper is organized as follows. In Sec. II, we shall briefly
introduce our theoretical model. In Sec. III, we define a Berry
connection for this system. In Sec. IV, we compute the Berry
curvatures for certain mean-field eigenstates, and compare
them to the results obtained with the second-quantized model.
Excellent agreement is found. Finally, in Sec. V, we discuss
the results and conclude.

II. THREE-LEVEL ATOM-MOLECULE SYSTEM

We consider an atom-molecule � system shown in Fig. 1.
With the atomic energy level set to be zero, the Hamiltonian
of this atom-molecule system under the rotating-wave approx-
imation can be written as

ĤN = h̄ωeψ̂
†
e ψ̂e + h̄ωgψ̂

†
gψ̂g + h̄�de

iνd t ψ̂†
e ψ̂g

+ h̄
�pe−iνpt

√
N

ψ̂†
e ψ̂aψ̂a + H.c., (1)

where νd and νp are the frequencies of laser pulse �d and laser
pulse �p, respectively; the bosonic annihilation and creation
operators ψ̂α and ψ̂†

α are for state |α〉 with α being a, g, or e;
and N is the total number of atoms.

We note that �p can be made complex. One way to achieve
this is to split the laser pulse νp into two beams 1 and 2 and
then recombine and focus them on the system. This will lead
to a complex �p as �p = ε1 + ε2e

−iϕ , where the phase ϕ

is determined by the optical path difference between the two
beams.

We split the Schrödinger picture Hamiltonian into two parts,
ĤN = ĤN0 + ĤN1, where

ĤN0 = h̄νpψ̂†
e ψ̂e + h̄(νp − νd )ψ̂†

gψ̂g, (2)
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FIG. 1. Schematic level diagram of an atom-molecule � system.
is the atomic energy level, |g〉 is the molecular ground state, and |e〉
is the excited molecular energy level. �d and �p are the two Rabi
frequencies of the laser pulses. 
 is the detuning of the pump field
with respect to the transition from |a〉 to |e〉.

ĤN1 = h̄(ωe − νp)ψ̂†
e ψ̂e + h̄(ωg − νp + νd )ψ̂†

gψ̂g

+ h̄�de
−iνd t ψ̂†

e ψ̂g + h̄
�pe−iνpt

√
N

ψ̂†
e ψ̂aψ̂a + H.c. (3)

After choosing ωe = ωg + νd and using the the interaction
picture Hamiltonian ĤNI = eiĤN0t/h̄ĤN1e

−iĤN0t/h̄, we obtain

ĤNI = h̄
ψ̂†
e ψ̂e + h̄
ψ̂†

gψ̂g + h̄Zψ̂†
e ψ̂g

+ h̄
(X − iY )√

N
ψ̂†

e ψ̂aψ̂a + H.c., (4)

where 
 = ωe − νp, Z = �d , and X − iY = �p. The three
parameters, X, Y , and Z, characterize the influences of the
laser beams.

In the limit N → ∞, this atom-molecule system becomes
classical and can be described by the following mean-field
Hamiltonian

Hs = lim
N→∞

〈 ˆHNI 〉
N

= h̄
ψ∗
e ψe + h̄
ψ∗

gψg

+ h̄Zψ∗
e ψg + h̄(X − iY )ψ∗

e ψaψa + H.c., (5)

where ψα is complex amplitude for the state |α〉. The
normalization is 2|ψe|2 + 2|ψg|2 + |ψa|2 = 1.

III. MEAN-FIELD BERRY CONNECTION

A particularly interesting point of this atom-molecule sys-
tem is that its mean-field Hamiltonian Hs has no U(1) system.
Instead, the Hamiltonian is invariant under the following
transformation:⎛

⎝ψe

ψg

ψa

⎞
⎠ → Us(1)

⎛
⎝ψe

ψg

ψa

⎞
⎠ =

⎛
⎝ e2iφ 0 0

0 e2iφ 0
0 0 eiφ

⎞
⎠

⎛
⎝ψe

ψg

ψa

⎞
⎠ . (6)

Following Ref. [18], we shall call Us(1) a skewed gauge
transformation. This lack of U(1) gauge transformation
presents an apparent difficulty in defining the Berry phase
(or Berry connection) in this mean-field model. However,
we notice that the mean-field Hamiltonian in Eq. (5) has

a classical Hamiltonian structure. Namely, we can define
three pairs of conjugate variables, pe = √

ih̄ψ∗
e ,qe = √

ih̄ψe,
pg = √

ih̄ψ∗
g ,qg = √

ih̄ψg , and pa = √
ih̄ψ∗

a ,qa = √
ih̄ψa ,

for this Hamiltonian. As the nonlinear Berry phase introduced
in Ref. [6] applies in any system which has a classical
Hamiltonian structure, it should also apply in this atom-
molecule system. If we focus on the integrable regions, the
system can be described by a set of action and angle variables.
This means that we can define the Berry connection for this
system as [6]

�A = i〈ψ | �∇|ψ〉 , (7)

where �∇ = (∂/∂X,∂/∂Y,∂/∂Z), and the bar indicates an
average over all initial angles with the same actions. According
to the quantum adiabatic theorem, in a linear quantum system
the occupation probabilities of different eigenstates |an|2
are adiabatic constants. In fact, they are actions In = |an|2
when the system is regarded mathematically as a classical
Hamiltonian system; their corresponding angle variables θn’s
are the phases of the an’s. Therefore, for an instantaneous
eigenstate, the averaging over the angles is no longer needed,
and the Berry connection becomes

�An = i〈ψn| �∇|ψn〉 , (8)

where |ψn〉 is an instantaneous eigenstate of the system. Let
us now analyze the general properties of this connection.

Under the skewed gauge transformation Us(1), we have

�A = i〈ψ | �∇|ψ〉 −→ �A′ = 〈ψ |′ i d

dR
|ψ〉′

= �A + (2|ψe|2 + 2|ψg|2 + |ψa|2) �∇φ , (9)

where the last term is a trivial total derivative due to the
conservation of the number of particles in the system. This
indicates that the Berry connection defined in Eq. (7) is
“gauge” invariant under Us(1).

Usually, the Berry connection �A defined in Eq. (7) is
guaranteed to be real by the U(1) gauge symmetry. Due to
the lack of U(1) symmetry in this atom-molecule system, the
so-defined �A is in general complex. However, this complexity
does not pose any difficulty. To see this, we decompose it
explicitly into the real part and the imaginary part

�A = i

2
(〈ψ | �∇|ψ〉 − 〈 �∇ψ |ψ〉) + i

2
�∇(〈ψ |ψ〉) , (10)

which shows clearly that the imaginary part is a total derivative
and, therefore, nonessential.

There is another way to justify the definition in Eq. (7), that
is, through its semiclassical relation with the quantum Berry
connection, which can be defined and computed with respect
to the second-quantized Hamiltonian ĤN1. We denote it as �AN ,
where the subscript N is referred to the number of atoms in
the system. One can prove that [21]

lim
N−→∞

( �BN

N
− �B

)
= 0 , (11)

where �B = �∇ × �A and �BN = �∇ × �AN are the mean-field and
quantum Berry curvatures, respectively. To prove this relation,
one first notices that the mean-field Hamiltonian is in fact the
semiclassical limit of ĤN1. To see this clearly, we can use the
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FIG. 2. (a) y component of the Berry curvature as a function of X

at Y = Z = 1 and 
 = 0. The inset shows how this Berry curvature
changes as a function of N , the number of particles, at X = 1.5.
(b) z component of the Berry curvature as a function of X at Z = 1
and Y = 
 = 0. The inset shows how this Berry curvature changes
as a function of N at X = 1.5. The dotted lines in the insets are for
the mean-field values of the Berry curvature.

three pairs of conjugate variables, pe,qe, pg,qg , and pa,qa ,
and quantize them as follows:

[q̂e,p̂e] = [q̂g,p̂g] = [q̂a,p̂a] = ih̄

N
. (12)

As can be checked easily, this recovers the second-quantized
Hamiltonian ĤNI . Since these commutators approach zero as
N −→ ∞, we see that the mean-field Hamiltonian Hs is the
semiclassical limit of the quantum Hamiltonian HNI . Since �A
defined in Eq. (7) can also be regarded as the connection for
Hannay’s angle [6], one can then prove the above semiclassical
relation by following Berry’s argument [22].

IV. EXAMPLE: EIGENSTATES

In this section, we use an example to illustrate the Berry
connection that we have introduced in the last section. For
simplicity, we focus on the ground state with 
 = 0. When
X2 + Y 2 > Z2

4 , the ground state is

ψe = 1
2 ,ψg = − 1

2 ,ψa = 0, (13)

with μ = −Z
2 . When X2 + Y 2 < Z2

4 , the ground state is

ψe = −
√

2
3 (X2 + Y 2) + 1

12Z2

2(X − iY )
, (14)

ψg = Z

4(X − iY )
, (15)

ψa =
√

2

3
− Z2

6(X2 + Y 2)
, (16)

with μ = −
√

2
3 (X2 + Y 2) + 1

12Z2.
With the definition of the Berry connection in Eq. (8), we

are able to compute the mean-field Berry curvature. We find
the Berry curvature is zero when (X2 + Y 2) < Z2/4. When
(X2 + Y 2) > Z2/4,

{Bx,By,Bz} = {X,Y,Z} Z

6(X2 + Y 2)2
. (17)

We have also computed the Berry curvature with the
second-quantized model ĤNI using the formula

BN0 = Im
∑
m�=0

〈0| �∇ĤNI |m〉 × 〈m| �∇ĤNI |0〉
(Em − E0)2

, (18)

where Em is the eigenenergy of the eigenstate |m〉. The second-
quantized Berry curvature is compared to the mean-field Berry
curvature as shown in Fig. 2. It is clear from the figure that
these two sets of results are in very good agreement with the
mean field. This further confirms that our definition of the
Berry connection in Eq. (7) is valid.

V. CONCLUSION

In the present work, we have given a general definition
of a Berry connection for nonlinear systems with a skewed
U(1) gauge invariance. We have justified this definition from
various aspects, in particular, its relation to a Berry connection
for the corresponding quantum systems. We have used a three-
level � atom-molecular system to illustrate our results. Our
result clarifies a mystery surrounding how to define a Berry
connection for nonlinear systems with skewed U(1) symmetry.
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