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Interactions of magnetic elements with graphene may lead to various electronic states that have potential applications.
We report an in-situ experiment in which the quantum transport properties of graphene are measured with increasing cobalt
coverage in continuous ultra-high vacuum environment. The results show that e-beam deposited cobalt forms clusters on the
surface of graphene, even at low sample temperatures. Scattering of charge carriers by the absorbed cobalt clusters results
in the disappearance of the Shubnikov–de Haas (SdH) oscillations and the appearance of negative magnetoresistance (MR)
which shows no sign of saturation up to an applied magnetic field of 9 T. We propose that these observations could originate
from quantum interference driven by cobalt disorder and can be explained by the weak localization theory.
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1. Introduction
The search for magnetic interactions in two-dimensional

(2D) crystals has attracted significant attention.[1,2] The co-
existence of magnetic and electronic properties in 2D crystals
and heterostructures could have wide-range of applications in
technologies such as data storage and computation.[3] In par-
ticular, the properties of hybrid structures consisting of non-
magnetic 2D crystals and magnetic atoms are at the center of
the research effort due to the potential tunability of such hybrid
structures. However, interference from the environment makes
it difficult to study the properties of such hybrid structures in
an ex-situ experiment. In situ atomic engineering is a powerful
tool to investigate the physical properties of 2D materials and
their hybrid structures.[4–6]

Graphene, a single atomic layer of graphitic carbon, is a
very promising platform to explore magnetism in two dimen-
sions owing to its extraordinary physical properties includ-
ing gate-tunable carrier concentration, high electronic mobil-
ity, and versatile interactions with absorbed species.[7–12] Al-
though many previous studies proposed utilizing defects,[13,14]

non in situ atomic treatment,[15–17] or proximity effect[18–20]

to design graphene-based magnetic devices; clear experimen-
tal evidence of magnetism in a graphene device remains elu-
sive. A previous theory[21] predicted that among the tradi-
tional ferromagnetic elements (Fe, Co, and Ni), only Co atoms
can induce magnetism in graphene. However, although several
Scanning Tunneling Microscopy (STM) experiments[22–24] for
Co-decorated graphene on metal substrates have been re-
ported, there exists no transport experiment for Co-decorated

isolated graphene on an insulating substrate to show the pres-
ence of induced magnetism.

In this work, we performed in situ quantum transport
measurement to study the effect of the electronic properties
of Co-decorated graphene. The results show that when the
cobalt atoms are deposited on the cold surface of graphene,
clusters are naturally formed on the surface of graphene, which
introduce both long-range and short-range scatterings on the
surface of graphene. Negative magnetoresistance (MR) that
does not saturate up to a magnetic field of 9 T has been ob-
served. No transport signature of ferromagnetism has been
found, although the possibility of induced paramagnetism can-
not be excluded. We discuss the possible reasons for the ab-
sence of transport signature of ferromagnetism and the origin
of the negative MR by comparing our results with the relevant
theories and experiments. In addition, a metal-insulator tran-
sition driven by quantum interference is observed and may be
related to the negative MR. These observations cannot be ex-
plained by the spin-half paramagnetism theory, variable range
hopping (VRH) model, and the opening of an energy gap, but
can be possibly explained by weak localization.

2. Experimental procedures
Graphene was mechanically exfoliated from a flake of

Kish graphite onto 300-nm SiO2/Si substrates. Standard
electron-beam lithography and metallization processes were
used to make Hall bar structures. Electrodes were made of
5-nm Cr/50-nm Au and a four-wire configuration was used in
the measurements. The device was then transferred into our
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homemade in situ quantum transport apparatus. The system
consists of an ultra-high vacuum (UHV)-compatible, Gifford-
McMahon (GM) cryocooler-based cryostat from Advanced
Research Systems Co. Ltd., a dry 9-T solenoid magnet from
Cryogenic Co. Ltd., and a special UHV chamber with surface
modification apparatus. An e-beam evaporator was used in this
experiment to produce high purity cobalt flux. Seven runs of
cobalt deposition were conducted and the transport properties
of graphene after each run were studied in situ. Continuous
UHV environment was maintained during the whole process
of deposition and measurement.

3. Results and discussion
Figure 1 shows the impact of cobalt adsorption on the

conductivity of graphene sheets. Changes induced by cobalt
adsorption are the following: (i) A decrease of conductiv-
ity and mobility; (ii) a shift in gate voltage of minimum
conductivity (Vmin) to more negative gate voltage; (iii) a
decrease in minimum conductivity, σmin; (iv) an additional
gate-dependent resistivity, which varies as |Vg−Vmin|δ . Fea-
tures (i), (ii), and (iii) indicate that cobalt adsorption gen-
erates n-type doping and is consistent with charged impu-
rity scattering.[4,5] Figure 1(b) shows additional resistivity due
to cobalt adsorption during different rounds as a function of
|Vg −Vmin|. The nonlinearity of additional resistivity with
|Vg −Vmin| shown in the inset of Fig. 1(b) can be attributed
to incomplete screening of the potential imposed by cobalt on
graphene, similar to previous atom-doping experiments.[25,26]

However, feature (iv) differs from pointlike charged impuri-
ties, as we will discuss in more detail subsequently.

Figure 2 is obtained by plotting data of Fig. 1(b) on a log-
arithmic scale. As shown in Fig. 2, the additional resistivity
as a function of gate voltage was carefully compared between
electron and hole carriers for different runs. The asymmetry
of additional resistivity between the electron side and the hole
side decreases with increasing cobalt doping. The observa-
tion indicates that cobalt adsorption introduced scattering that
differs from scattering of pure charge impurities.[4,27] In ad-
dition, the additional resistivity varies as nδ , where n is the
carrier density ∝ |Vg−Vmin| and δ is the exponent. We found
that with increasing doping concentration at high carrier den-
sities (Fig. 3(a)), δ saturates at 0.8. Previous theories point out
that the density dependent resistivity of graphene is expected
to be ρ ∝ nδ , with |δ | = 1 for charged impurities and |δ | < 1
for short-range scattering.[4,28] These observations show that
the cobalt adsorption will not only introduce long-range scat-
tering, but also introduce short-range scattering in graphene.

As scattering from single ions and clusters of charged im-
purities show a similar resistivity dependence on carrier den-
sity, it is important to investigate the relationship between the
mobility (µ) and the shift in Dirac points (Vshift = |Vg,min −

V0,min|) to determine whether these features described above
are generated by scattering from single ions or from clusters
of charged impurities. The addition of charged impurities will
result in a shift of the Dirac point in graphene through the
power-law relationship, Vshift ∼ (1/µ−1/µ0)

b, where µ0 is
the mobility of the sample before Co-decoration. For ran-
dom point-like charged impurities, each impurity contributes
equally to doping and in providing scattering cross section,
leading to Vshift ∝ 1/µ; however, for clusters of charged im-
purities, each impurity atom contributes equally to doping in a
similar manner as in the case of random point-like impurities,
but the scattering cross section per atom is significantly re-
duced and dependent on cluster size, leading to Vshift ∝ (1/µ)b,
where b < 1.[26,29] The slope of the graph obtained by plotting
the experimentally obtained Vshift versus 1/µ in a semi-log plot
provides the value of the exponent b. Figure 3(b) shows our
data as well as power-law fitting with b = 0.81 for electrons
and b = 0.58 for holes. The experimentally determined coef-
ficient b indicates that cobalt deposited by an e-beam evapo-
rator forms clusters on the graphene surface, even though the
graphene sample was held at cryogenic temperatures.
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Fig. 1. (color online) (a) The conductivity (σ ) versus gate voltage (Vg) curves
for the pristine sample and seven different doping concentrations obtained at
7.1 K in UHV. Inset: Schematics of the experimental setup. (b) Resistivity
as a function of Vg−Vmin at different doping concentrations. Inset: Added
resistivity as a function of Vg−Vmin at different areal dosage normalized to
Vshift = |Vg,min−V0,min|. The color code is the same for the inset and the main
graph of Fig. 1(b).
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Fig. 2. (color online) (a) Log–log plot of gate dependence of the resistivity as a function of |Vg−Vmin| for the pristine sample. (b)-(f) Log–log plot of gate
dependence of the added resistivity as a function of Vg−Vmin for Run2– Run6. The blue and red dots represent electrons and holes respectively. The solid
line indicates the fitting to |Vg−Vmin|δ .
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line is the power-law fit to the equation, Vshift ∼ (1/µ−1/µ0)

b.

Next, the temperature dependence of the resistivity at
zero magnetic field was studied. It is well known that pris-
tine graphene is highly conductive with a weakly temperature-
dependent resistivity as shown in the inset of Fig. 4(a). Af-
ter cobalt decoration, the resistivity becomes more sensitive
to temperature as shown in Fig. 4(a). The device behaves as
an insulator, especially at low temperature and at the vicin-
ity of the Dirac point (Fig. 4(b)). Previous studies reported
that disorder in graphene obtained by hydrogenation or oxida-
tion could open an energy gap in graphene.[30–32] We plotted
ρDirac as a function of inverse temperature (inset of Fig. 4(b))
on logarithmic scale and found that ρDirac was poorly de-
scribed by thermal activation model ρ ∝ eEg/kBT . The en-
ergy gap obtained from the fitting was Eg ∼ 0.1 meV, which is
much smaller than both the lowest achieved sample tempera-
ture kBT ∼ 3 meV and the smallest achieved potential fluctu-
ations due to charge inhomogeneity (of the order of 98 meV
near the Dirac point for the pristine sample).[33] Thus the pos-
sibility of the formation of energy gap as the mechanism for
the insulating behavior of cobalt-decorated graphene can be
excluded.

We also note that even for the highest cobalt concentra-
tion, the resistivity of graphene at the Dirac point remains
smaller than h/e2 at the lowest temperature of 7 K, increas-
ing only twice compared to the resistivity of the Co-decorated
sample at 300 K. Therefore, our data cannot be explained
by 2D variable-range hopping (2D VRH). Besides, 2D VRH
would be accompanied by a positive MR due to the shrink-
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age of electron wavefunction when the sample is subject to
increasing perpendicular magnetic field,[34–36] which counters
our experimental observation (shown in the next paragraph).
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Now we focus our discussion on the transport proper-
ties of Co-decorated graphene under perpendicular magnetic
field, in which non-saturating negative MR was observed. Fig-
ure 5(a) shows that the magnitude of the negative MR in-
creases as the density is lowered. Figure 5(b) plots the de-
pendence of MR on cobalt concentration for different doping
runs. The disappearance of SdH oscillation with increasing
doping can be observed and the negative MR becomes more
pronounced without signs of saturation up to the highest mag-
netic field of 9 T achieved in this experiment. In existing the-
ories, the negative MR in perpendicular magnetic field orig-
inates from the alignment of magnetic moments in the sam-
ple due to the external magnetic field or from the destruction
of localization driven by quantum interference. If the nega-
tive MR is attributed to ferromagnetism introduced by cobalt,
anomalous Hall resistivity in Rxy versus B and hysteresis in Rxx

versus B as well as Rxy versus B when cycling magnetic field
between Bmax and –Bmax should be observed below the Curie
temperature. However, no such signatures are found which
indicates that the device is nonmagnetic or paramagnetic. Pre-
vious studies[16] reveal that point defects will introduce no-
table paramagnetism to the graphene sheet. In paramagnetic
materials, the global magnetization M should behave like the
Brillouin function

M = NgJµB

[
2J+1

2J
coth

(
(2J+1)z

2J

)
− 1

2J
coth

( z
2J

)]
,

where z = gJµBH/kBT , g is the g-factor and J is the angular
momentum. The relationship between MR and M in general
is MR ∝−M2(H) in multicarrier systems.[37] If such relation-
ship could be applied to graphene in the vicinity of the Dirac
point, we could extract M(H) from the MR data of Fig. 5.
However, our MR data does not fit to the Brillouin function. A
reasonable speculation is that cobalt clusters are different from
point defects, which create Pz vacancies that are expected to
carry magnetic moments. Hence, we deduce that magnetism
did not play an important role in the origin of the negative MR
in our sample. In the following, another possible explanation
for the negative MR, the suppression of quantum interference
by increasing perpendicular magnetic field, is discussed.
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Fig. 5. (color online) (a) MR in the perpendicular magnetic field for
Run1 at T = 7.1 K and three different carrier densities n = 2.1, 2.8, and
4.2×1016 m−2. (b) MR for carrier density n = 3.5×1016 m−2 for pristine
graphene, Run1 and Run6.
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In disordered systems with sufficiently long electron de-
phasing length, time-reversal symmetric scattering paths could
constructively interfere, leading to a logarithmic divergence in
the resistivity of the sample with decreasing temperature,[38]

an effect that is much more pronounced for 2D systems.[39,40]

The Co-decorated graphene indeed shows logarithmic diver-
gence in resistivity as shown in Fig. 4(b), consistent with the
appearance of weak localization in the sample. In systems
with weak localization, application of the magnetic field per-
pendicular to the sample breaks the time-reversal symmetry
between forward and backward hopping paths, destroying the
quantum inferences thus generating a negative MR. The cor-
rection of conductivity to the semi-classical Drude conductiv-
ity in this case is given by:[41]

∆σ =
e2

πh

[
F
(

B
Bϕ

)
−F

(
B

Bϕ +2Bi

)
− 2F

(
B

Bϕ +Bi +B∗

)]
. (1)

Here, F (x) = ln(x)+Γ(1/2+1/x) ,Bϕ,i,∗ = h̄/4eLϕ,i,∗, and
Γ(x) is the digamma function. We explore whether the neg-
ative MR results from time-reversal symmetry breaking, the
phase coherence length, Lϕ , and inter-valley scattering length,
Li, are the necessary fitting parameters. By tuning the back
gate, the carrier density n of graphene can be varied from
1.4× 1016 m−2 to 4.2× 1016 m−2 after each round of cobalt
deposition. Then the low-field magneto-conductance (MC)
for different runs was compared for the same carrier density.
Figure 6 shows the plot of the experimental MC data, which
agrees well with the theory. The phase coherence length Lϕ

and inter-valley scattering length Li can be extracted from
Fig. 6. Figure 7(a) shows dependence of Lϕ and Li on carrier
density. The increase of Lϕ with increasing n and the weak
dependence of Li on n is consistent with previous works.[42,43]

The more convincing evidence comes from Fig. 7(b) where
both length scales decrease with increasing cobalt coverage.
The same trend of Lϕ and Li indicates the correlation between
cobalt adsorption and quantum interference driven by short-
range scattering centers, consistent with our finding in Fig. 2.
The order of magnitude of Lϕ is in good agreement with the
previous results in disordered graphene.[44]

To understand the fact that Lϕ and Li both decrease
with increasing cobalt decoration and decreasing carrier con-
centration, one can make use of the concept of localization
length without involving magnetic interactions. Even though
a quantitative theory describing the localization length, ξ , in
a weakly localized sample (e.g. Co-decorated graphene) is
yet to be developed, ξ should be decreasing in a sample with
increasing disorder (high cobalt concentration) and decreasing
screening (lower carrier density). On the other hand, Lϕ and Li

should be bounded by ξ by definition. Thus, the trends shown
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in Fig. 7 are easily understood and a direct correlation between
the increasing magnitudes of the negative MR in Co-decorated
graphene and a decreasing ξ can be established.

One interesting finding in this experiment is that there is
no sign of saturation of the negative MR even at a magnetic
field of 9 T, which is relatively large for weak localization.
A phenomenological explanation can be used to understand
this. In the weak localization picture, the comparison be-
tween two length scales is critical. The first length is the phase
coherence length, Lϕ , and the other is the magnetic length,
lB = (h̄/eB)1/2, which is the cyclotron radius of the elec-
trons. The suppression of quantum interference in disordered
systems happens approximately when Lϕ > 2πlB, and when
the resistivity of the sample recovers its classical value.[45,46]

Since the upper bound of 2πlB = 2π (h̄/eB)1/2 = 53.8 nm at
B = 9 T, which is still larger than Lϕ , the appearance of the
negative MR in the whole range of measurement is reasonable.

4. Conclusion
We have systematically studied the transport properties of

cobalt-decorated graphene by in situ quantum transport mea-
surements. We found that e-beam-evaporated cobalt formed
clusters even on the cold surface of graphene and introduced
both long-range and short-range scatterings. The Shubnikov-
de Haas (SdH) oscillations disappeared with increasing cobalt
coverage and no signature of ferromagnetism was been ob-
served. Cobalt-decorated graphene exhibited a negative MR in
perpendicular magnetic field and an insulating behavior with
decreasing temperature. The above behavior can be explained
well in the framework of weak localization caused by cobalt
adsorption.
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