
0.1 Pulse Manipulation + Space-Time Analogies

We now have the tools to control the dispersion of optical pulses. We shall see a

number of applications as we go, but the most obvious are (1) to compensate for

material dispersion, and (2) to stretch pulses to keep their peak power low on either

propagation or amplification, and then to recompress the pulse. The manipulation of

electromagnetic pulses was first done extensively in the 40’s and 50’s in the microwave

region of the spectrum with the development of ‘chirp radar’. The development of

optical technologies in the past 20 years have enabled many similar technologies of

pulse manipulation in the visible/near IR spectrum. Our next goal is to provide a

physical and very general description of dispersive pulse propagation.

Typical system:

Figure 1: dispersive pulse propagation system.

Perfect recompression:
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i.e. we need consider only quadratic phase terms (sometimes this is called ‘first

order optics’)

Let us start by recalling some results for linearly chirped Gaussian pulse propagation

ε(z, t) = ei(ω0t−β0z)e−Γ(z)(t−β′z)2

where

Γ = a(z)− ib(z)

1

Γ(z)
=

1

Γ0

+ 2iβ
′′
z

(τp =

√
2 ln 2

a
)

for b0=0 (initially transform-limited pulse)

τp = τp0
√

1 + 4a2
0β
′′2z2

= τp0

√
1 +

z2

L2
D

where LD =characristic length (doubles pulse in intensity in distance z = z0) =

1
2a0β

′′
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Figure 2: τp − z plot.

This functional form of the Gaussian pulsewidth vs. z should remind you of the

Gaussian beam in spatial propagation. (For a review of Gaussian beams, see Siegman

chap. 17)

Figure 3: Gaussian pulsewidth vs. z

w(z)= beam radius

w0= ‘waist’ = minimum radius

R(z) = radius of curvature of phase fronts

In fact, the analogy between the spatial and temporal Gaussians is quite strong.

Before going on to establish the general analogy between dispersive pulse propagation

and diffractive spatial propagation, we will show the analogous parameters for Gaussian

beams + pulses.
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Normalized field amplitude of Gaussian beam with waist at z=0:

u(x, y, z) =

√
2

π

e−iβ0z+iΨ(z)

w(z)
e

[−x2+y2

w2(z)
−iβ0 x

2+y2

2R(z)
]

where w(z) = w0

√
1 + ( z

zR
)2 = beam radius

R(z) = z +
z2R
z

= wavefront radius

Ψ(z) = arctan( z
zR

), describes π phase shift through focus

zR is konwn as the Rayleigh length (and describes how fast the beam diverges). It

is related to the waist size by

zR =
πw2

0

λ

Thus a smaller waist radius will give a shorter Rayleigh range, corresponding to a

larger beam divergence, i.e. larger diffraction angle.

By comparing the functional forms of the spatial and temporal Gaussians, we can

draw strong analogies between the two.

Table 1: analogies between spatial and temporal Gaussians

spatial temporal
waist w0 pulse width τp0√
1 + ( z

zR
)2

√
1 + ( z

lD
)2

Rayleigh range characteristic dispersion length

zR =
πw2

0

λ
lD = 1

2a0β
′′ ∝ τ 2

p0

wavefront radius R−1(z) chirp parameter b(z)

To see the latter relationship, we rewrite R as

R(z) = z +
z2
R

z
=
z2
R + z2

z

1

R
=

z

z2
R + z2

=
z/zR

1 + (z/zR)2

1

zR
∝ z/zR

1 + (z/zR)2

1

ω2
0
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Now recall we derived the chirp parameter b to be ( when b0=0, no initial chirp):

b(z) =
2a2

0β
′′
z

1 + (2a0β
′′z)2

with our above definition of lD, we have

b(z) =
z/lD

1 + (z/lD)2
· a0 ∝

z/lD
1 + (z/lD)2

1

τ 2
p0

Thus our pricture of pulse propagation in terms of its analogue in Gaussian beam

propagation is:

1. at z=0, start with transform-limited pulse, which corresponds to a beam

waist.

2. at z=0, chirp parameter b=0 ←→ R=∞

3. as z increases from zero, the pulse spreads in time, corresponding to spatial

diffraction. The shorter the pulse (the smaller the beam waist), the more rapidly the

pulse spreads (the faster the diffraction).

4. The width of the pulse (in intensity) doubles in a distance lD; its beam radius

doubles in zR.

5. as z −→ z � l0, zR

R(z) = z, b ∝ 1

z

(fixed bandwidth ⇒ when the pulse is very long, the instantaneous rate of phase

change is slow)

recall definition of spatial frequency

ωx,y = −2π
λ
θx,y ( θx,y = angle w.r.t. z axis in x− z or y − z plane)
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of course, all spatial frequencies are present in Gaussian beam at z=0, but they

spread out with propagation ⇒ ‘chirp’ in spatial frequency.
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Figure 4: pulse propagation.

Fourier synthesis of a Gaussian beam

At the beam waist, all ~k vectors (i.e. all spatial frequency components) are in phase

at x = y = 0 ⇒ ‘transform limited’ beam.
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Figure 5: kx and ky components cancel, so net ~k is only in z direction ⇒
R(0) =∞ (planar wavefront)

Figure 6: summing an infinite number of plane waves with Gaussian weight-
ing produces a Gaussian beam with minimum width (w0)

As the beam propagates, each spatial frequency component propagates at an angle

θx,y, and these plane waves are no longer all in phase at x = y = 0. When z �

zR, the positions of ‘stationary phase’, where spatial frequency ‘groups’ are in phase,

correspond to spherical wavefronts with radius R(z):
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Figure 7: ‘chirp corresponds to spatial frequency components ωx < 0 occur-
ing at x > 0. (diffraction↔negative dispersion)

The analogy between dispersive pulse propagation and spatial diffraction actually

goes well beyond just Gaussian beams. Examining the analogy in its most general

form will in fact lead us to a deeper understanding of pulse compression, and enable

invention of a few novel devices as well.

Parabolic Eqn. describing dispersive pulse propagation:

∂Ẽ

∂z
+

1

vg

∂Ẽ

∂t
=
i

2
β
′′ ∂2Ẽ(z, t)

∂t2

where Ẽ(z, t) is the pulse envelope

ε̃(z, t) = Ẽ(z, t)e2[ω0t−β(ω0)z]

For convenience, we can make a change of variables to a coordinate system travelling

at the group velocity of the pulse:

τ = t− z

vg
; ξ = z

⇒ parabolic eqn. is

8



∂Ẽ(ξ, τ)

∂ξ
=
i

2
β
′′ ∂2Ẽ(ξ, τ)

∂τ 2

τ

z

no dispersion

τ

z

positive dispersion

ξ

ξ

Figure 8: dispersive/nondispersive pulse propagation.

• peak moves at vg(ω0)

• ξ is the ‘local’ position corrdinate (in reference from moving at vg)

0.2 Paraxial Diffraction

(for review, see Siegman chap 16)

We will follow the treatment (and for the most part the notation as well) of Kolner

in JQE 30, 1951 (1994).

As usual, start with the wave eqn.

∇2 ~E = µε
∂2 ~E

∂t2
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where the dielectric material response is in in ε. Assume a monochromatic scalar

wave

ε(x, y, z, ω) = E
′
(x, y, z)δ(ω − ω0)

⇒ Helmholtz eqn.

(∇2 + k2)E
′
(x, y, z) = 0, k2 = µεω2

0

Consider propagation along z-axis, so that the normals to the phase fronts (i.e. the

rays) are confined nearly along the z-axis. These are called paraxial rays:

Figure 9: paraxial rays.

E
′
(x, y, z) = E(x, y, z)e−ikz

E(x, y, z) is slowly varying (in space) envelope function, e−ikz is the rapidly varying

phase.

Consider

∂2E
′

∂z2
=

∂

∂z
[
∂E

∂z
e−ikz − ikEe−ikz]

= (
∂2E

∂z2
− k2E − 2ik

∂E

∂z
)e−ikz
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⇒ Helmholtz eqn.

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
− 2ik

∂E

∂z
= 0 (dividing out e−ikz)

Paraxial Approximation:

|∂2E
∂z2
| �| all other terms in Helmholtz eqn.|

Physically, this means that the change in the field envelope with propagation is

slow, both with respect to a wavelength, and with respect to the scale of the trans-

verse profile.

⇒ paraxial wave eqn.

∂E

∂z
= − i

2k
∇2
TE

Comparing this to the parabolic eqn. mentioned above, we see a strong resemblance

(in fact, if we consider only one transverse dimension in the paraxial eqn., then they

are mathematically identical).

Thus we can translate between the two pictures by making the identifications

Table 2: spatial propagation versus dispersive pulse propagation

spatial propagation dispersive pulse propagation
z ξ
x τ
1
k −β ′′

Note that 1
k
∼ λ measures the rate at which a beam will expand by diffraction

(for a given aperture size, the long wavelengths differact more rapidly than the short

wavelengths). Similarly β
′′

measures the rate at which a short pulse expands in a

dispersive medium (higher GDD means the pulse stretches more rapidly).

note: positive GVD is β
′′
> 0

⇒ in some sense diffraction is from space corresponds to ‘negative dispersion’

The problem, of course, is to solve the propagation problem; i.e. given a pulse

envelope Ẽ(0, τ), what is the envelope Ẽ(ξ, τ) after propagating a distance ξ in a
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dispersive medium? One practical way would be to just crank through a numerical

solution to the parabolic eqn. directly (i.e. a finite-difference solution). However, we

can also follow the diffraction-propagation analogy and obtain useful integral solutions.

0.3 paraxial wave eqn. solution

Given input at z = 0, E(x, y, 0), we know that a spherical wave

E
′
=
e−ikr

r

is an exact solution to the Helmholtz eqn. Now consider this wave along the z-axis

Figure 10: a spherical wave along the z-axis

r= distance from source point to observation point

=
√

(x− x0)2 + (y − y0)2 + z2

= z

√
1 +

(x− x0)2

z2
+

(y − y0)2

z2

Fresrel approximation

for observation points close to the z-axis (i.e. for paraxial rays)

r ' z[1 +
(x− x0)2

2z2
+

(y − y0)2

2z2
]

= z +
(x− x0)2

2z
+

(y − y0)2

2z
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⇒ spherical wave is approximately

E
′ ' e−ikz

z
e−ik[

(x−x0)
2

2z
+

(y−y0)
2

2z
]

As before, writing

E
′
= E(x, y, z)e−ikz

gives for the envelope

E(x, y, z) =
1

z
e−ik[

(x−x0)
2

2z
+

(y−y0)
2

2z
]

( the ‘paraxial-spherical wave’)

It is easy to verify that this is an exact solution to the paraxial wave equation.

In other words, the approximations leading to the paraxial wave eqn. are exactly

those leading to the paraxial-spherical wave (i.e. terminating the phase term so it is

quadratic in the transverse spatial variables x, y is equavalent to neglecting ∂2E
∂z2

).

check solution:

∂E

∂x
= −ik

z
E(x− x0)

∂2E

∂x2
= −ik

z
E − ik

z
(x− x0)

∂E

∂x

= −ik
z
E − ik

z
(x− x0)[−ik

z
E(x− x0)]

= −ik
z
E − k2

z2
(x− x0)2E
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∂2E

∂y2
= −ik

z
E − k2

z2
(y − y0)2E

∂E

∂z
= −E

z
− E{−ik[

(x− x0)2

2z2
+

(y − y0)2

2z2
]}

∂E

∂z
∇2
TE−2ik

∂E

∂z
=

2ik

z
E+

k2

z2
[(x−x0)2+(y−y0)2]E−2ik

z
E−k

2

z2
[(x−x0)2+(y−y0)2]E = 0

⇒ E is a solution to the paraxial wave eqn.

Now we can apply the Huygens-Fresnel Principle’s: given E(x0, y0, 0) in the source

plane z = 0, consider each point on the wavefront at z = 0 to be a source of paraxial-

spherical waves. The total field at a point (x,y,z) is the sum of all these waves.

E(x, y, z) =
i

λz

∫ ∫
E(x0, y0, 0)e−ik[(x−x0)2+(y−y0)2]/2zdx0dy0

(Huygens-Fresnel integral; the i
λ

comes from a more rigorous approach to the the-

ory)

In one spatial dimension, one would have a slightly different normalization:

E(x, z) '
√

i

λz

∫
E0(x0, 0)e−ik(x−x0)2/2zdx0

Now by making the variable identifications above, we have the solution to the

parabolic eqn. for pulse propagation:

E(τ, ξ) ' 1√
ξ

∫
E0(τ0, 0)e−i(τ−τ0)2/2β

′′
ξdτ0

Thus we can find the complex field after propagation over an arbitrary distance ξ.
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It is interesting to consider what happens after propagation over a long distance:

(τ − τ0)2

2β ′′ξ
=
τ 2 − 2τ0τ + τ 2

0

2β ′′ξ

i.e. consider
τ20

2β′′ξ
� 1 or ξ � τ20

2β′′
(This is equivalent to taking the Fraunhofer

limit in diffraction theory.) i.e. z � πω2
0

λ
( β

′′ ↔ 1
b

= λ
2π

)

E(τ, ξ) ' e−iτ
2/2β

′′
ξ

√
ξ

∫
E0(τ0, 0)eiττ0/β

′′
ξdτ0

e−iτ
2/2β

′′
ξ√

ξ
is overall quadratic phase factor (on the local time).

∫
E0(τ0, 0)eiττ0/β

′′
ξdτ0

is Fourier transform of the input pulse.

Example: linearly chirped square pulse = input field ⇒ output looks like sinc

function.

Figure 11: pulse compression and reshaping with a square input pulse en-
velope.

Recall that exactly the same thing happens in Fraunhofer diffraction; the far field is

the Fourier transform of the source field, but with a curved (paraboloidal) phase front.
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