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Introduction

Layered transition metal dichalcogenides (TMDs), 
a family of van der Waals crystals, have attracted 
extensive research interests due to their intriguing 
properties [1–4]. Certain TMDs have rich structural
and electronic phases which exhibit drastically different 
physical properties [5–15]. MoTe2, in particular, is an
excellent example of such multi-phase materials, which 
possesses three different crystal structures: hexagonal 
2H, monoclinic 1T′, and orthorhombic Td [14]. The 
2H phase MoTe2 is a semiconductor and candidate 
material for 2D field effect transistors (2D-FETs) [16]. 
The 1T′ phase MoTe2 is a quantum spin Hall candidate 
at the single layer form [17, 18], and a central symmetric 
semimetal at the multi-layer form, whose crystal 
symmetry belongs to the P21/m space group [14]. The 
non-centrosymmetric Td phase MoTe2 belongs to the 
Pmn21 space group and is a type-II Weyl semimetal 
which violates the Lorentz invariant, with the Weyl 
points appear as the touching points between electron 
and hole pocket in a tilted cone configuration [14,15].

The structural phase transition of MoTe2 between 
the 1T′ phase and the 2H phase can be achieved by elec-
trostatic doping at room temperature [8], while the 
transition between the 1T′ phase and the Td phase is 
driven by temperature [14]. Such temperature driven 
structural phase trans ition between Td (low temper-
ature phase) and 1T′ (high temperature phase) has been 
demonstrated by electrical transport [19, 20], Raman 
spectroscopy [14] and angle-resolved photoemission 
spectroscopy [15]. In this article, we report the first 
observation of Barkhausen physics in the first order 
structural phase transition between the two metallic 
phases of MoTe2 (the 1T′ phase and the Td phase).

The Barkhausen effect is originally defined as a 
series of sudden reversal of Weiss domains in a ferro-
magnet during a continuous process of magnetization 
or demagnetization [21–23]. The Barkhausen phys-
ics is related to domain wall pinning and de-pinning 
when a ferromagnetic system experiences a transition 
between two different states. During the transition, the 
domain wall between two states moves through the 
sample. Defects in the crystal pin the moving domain 
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Abstract
We report the first observation of the non-magnetic Barkhausen effect in van der Waals layered 
crystals, specifically, during transitions between the Td and 1T′ phases in type-II Weyl semimetal 
MoTe2. Thinning down the MoTe2 crystal from bulk material to about 25 nm results in a drastic 
strengthening of the hysteresis in the phase transition, with the difference in critical temperature 
increasing from ~40 K to more than 300 K. The Barkhausen effect appears for thin samples and 
the temperature range of the Barkhausen zone grows approximately linearly with reducing 
sample thickness, pointing to a surface origin of the phase pinning effects. The distribution of 
the Barkhausen jumps shows a power law behavior, with its critical exponent α  =  1.27, in good 
agreement with existing scaling theory. Temperature-dependent Raman spectroscopy on MoTe2 
crystals of various thicknesses shows results consistent with our transport measurements.
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wall and hold the neighbor area in the past state until 
the energy gain in flipping the whole neighbor area 
gets larger than the de-pinning energy. When de- 
pinning happens, the pinned area suddenly turns into 
the other state, leading to a jump in the total magneti-
zation of the sample (see supplementary materials  
figure S1 (stacks.iop.org/TDM/5/044003/mmedia)). 
The Barkhausen effect has been a powerful tool to char-
acterize magnetic and ferroelectric materials [24–27], 
and it has also attracted growing interest as an example 
of complex dynamical systems displaying dimension-
dependent scaling behavior [22]. Given the ubiquitous 
presence of the Barkhausen effect in magnetic phase 
transition [24–29], only a limited number of research 
has revealed Barkhausen physics in thermally-driven 
first-order phase transition in non-magnetic mat-
erials [30–35], and none of such transition has been 
observed in van der Waals layered crystals.

Here, we report the first observation of the thick-
ness-dependent Barkhausen effect in the thermally-
driven first order structural phase transition between 
the Td phase and the 1T′ phase in MoTe2. The Td phase 
and 1T′ phase MoTe2 are both metallic but with dif-
ferent resistivity at any given temperature (e.g. 
ρTd

< ρ1T′). Thus, careful measurement of the resis-
tivity of the MoTe2 as a function of temperature ρ(T) 
reveals events of the structural phase transition in the 
crystal.

For bulk crystals, the phase transition happens 
sharply at around 250 K with no additional features, 
and hysteresis of the transition temperature, defined 
as Thysteresis = TTd→1T′ − T1T′→Td, is around 40 K 
(figure 1(b)). For samples between 100 nm–20 nm, 
on the other hand, the phase transition occurs in a 
large temperature region and exhibits a series of kinks 
in ρ(T), which is a manifestation of the Barkhausen 

effect. Thinning down the MoTe2 crystal from bulk 
material to about 20 nm results in a drastic strength-
ening of the hysteresis in the phase transition, with 
Thysteresis increasing from ~40 K to more than 300 K. 
The temperature range of the Barkhausen zone grows 
approximately linearly with reducing sample thick-
ness as determined by four-probe resistivity meas-
urement. The distribution of the Barkhausen jumps 
shows a power law behavior, with its critical exponent 
α = 1.27, consistent with theoretical expectations as 
explained later in this letter. Temperature-dependent 
Raman spectroscopy is also performed on MoTe2 crys-
tals of various thicknesses, showing results consistent 
with our transport measurements.

Results and discussion

The temperature-driven structural phase transition 
in few-layer metallic MoTe2 is studied using electrical 
transport measurement as well as Raman spectroscopy. 
Figure 1(a) shows the atomic schematics of MoTe2 
in Td phase and in 1T′ phase. The Td phase MoTe2 
shares the same in-plane crystal structure with the 1T′ 
phase MoTe2 and differs only in vertical stacking [14]. 
Figure 1(b) shows a typical temperature-dependent 
four-probe resistivity curve of bulk metallic MoTe2. 
The transition from 1T′ phase to Td phase occurs 
at about 230 K to 250 K and the transition from Td 
phase to 1T′ phase occurs at about 260 K to 270 K. It 
is experimentally observed that ρTd

< ρ1T′ at the 
phase transition temperature, thus ∆ρTd→1T′ > 0 and 
∆ρ1T′→Td

< 0.
Figure 1(c) shows a typical temperature- 

dependent four-probe resistivity curve ρ(T) for a 50 
nm-thick MoTe2 sample, which is fairly different from 
that of the bulk samples. The cooling curve and warm-

Figure 1. Temperature-induced phase transition in few-layer MoTe2. (a) Crystal structures of 1T′ and Td phase MoTe2.  
(b) Temperature dependent resistivity of a bulk MoTe2 sample; cooling curve in blue, warming in red. (c) Temperature dependent 
resistivity of a 50 nm MoTe2 sample. Cooling curve in blue, warming in red. Upper (lower) insets: zoom-in of the cooling 
(warming) curve in (c) with background subtracted.
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ing curve do not overlap from 80 K to 320 K, showing 
that the hysteresis of transition between the 1T′ phase 
and the Td phase has been strengthened. While bulk 
crystals show a smooth function of ρ(T) during the 
phase transition, a series of kinks in ρ(T) appear in 
a wide temperature range for both the warming and 
cooling curves in thinner samples. Here a kink means 
an instance of rapid change in the ρ(T) curve. We 
found that all the kinks in the cooling curve (1T′ → Td, 
upper inset in figure 1(c)) represent rapid drops in the 
resistivity, while all the kinks in the warming curve 
(Td → 1T′, lower inset in figure 1(c)) represent rapid 
increase in the resistivity, consistent with the fact that 
∆ρ1T′→Td

< 0 and ∆ρTd→1T′ > 0. Thus, both the 
kinks and the strengthened hysteresis behavior in the 
ρ(T) curves can be attributed to modified structural 
phase transition in thin MoTe2 crystals. The appear-
ance of kinks in the ρ(T) curves reveals the existence of 
phase pinning in the first order phase transition pro-
cess in thin MoTe2. During cooling (warming) process, 
defects or local strains in the crystal pin their neighbor 
area in the 1T′ (Td) phase; as the temperature becomes 
sufficiently low (high), the pinned area suddenly flips 
to the Td (1T′) phase, and be detected as a kink in the 
ρ(T) curves.

Figure 2(a) shows ρ(T) curves for seven temper-
ature scans of a 50 nm MoTe2 sample between 10 K and 
350 K (curves offset for clarity). All the curves show 
metallic and hysteresis behavior. We found that kinks 
in the ρ(T) curves do not happen at the same temper-
ature during different experimental runs for the same 
device, but rather, has a statistical distribution, which 
is analogous to the Barkhausen effect observed in 
magn etic materials (e.g. jumps in the M(H) curves 
has a statistical distribution) [24, 25]. The distribution 
of the kinks can be summarized as a histogram of the 
occurrence of the kinks weighted by the height (∆ρ) 
of respective kinks, as shown in figure 2(b). We collect 
kinks from all 7 runs of cooling and warming process, 

sum up all kinks’ height in each bin (5 K in temper-
ature), and plot the value (in units of Ohms) as a func-
tion of temperature. The height of a kink is obtained 
using a procedure shown in the inset of figure 2(a). It 
is worth pointing out that the kink histogram may not 
show the full scale of the phase transition, but rather, 
show the temperature distribution of all the detected 
Barkhausen jumps. Nonetheless, the kink histogram 
reveals the temperature range that phase transition 
occurs. In figure 2(b), the blue histogram is extracted 
form cooling curves, and red from warming curves. 
Comparing with the bulk, the temperature range of 
the phase transition shifts and expands to 180 K–50 K 
for the 1T′ → Td transition, and 230 K–320 K for the 
Td → 1T′ transition. The expansion of Thysteresis can 
also be explained by the Barkhausen effect, as defects 
pinning impedes the phase transition process, leading 
to super-cooled/super-heated states. We notice that 
the total-height of the Barkhausen jumps in cooling 
is much larger than in warming. One possible expla-
nation is that the pinning effect is stronger as thermal 
fluctuation is smaller in lower temperature, thus larger 
Barkhausen jumps are recorded during cooling than 
during warming.

To study the evolution of the phase transition 
temper ature as a function of sample thickness, we fab-
ricated several devices with thickness ranging from 
6 nm to 120 nm. For samples between 20 nm–100 nm, 
the Barkhausen effect can be observed. We can define 
the ‘Barkhausen zone’ as the range of temperature 
between the highest and the lowest kink temperature. 
For samples thicker than 100 nm, Barkhausen jumps 
disappear and the ρ(T) curves show bulk-like behav-
ior with a shift of the transition temperature (see sup-
plementary materials figure S2). Figure 3 plots the 
temperature ranges of the Barkhausen jumps versus 
sample thickness together with the phase transition 
temperature range for bulk crystals. The temperature 
ranges are plotted by dash bars for each thickness. We 

Figure 2. Barkhausen jumps in few-layer MoTe2. (a) Repeated temperature dependent resistivity measurement of the 50 nm MoTe2 
sample. Seven runs of the cooling-warming process are plotted together with Y-offset. The inset shows the method to determine kink 
height. (b) Histogram of resistivity kinks in figure (a), weighted by kink’s height. Kinks in cooling and warming are plotted side-by-
side. Blue- and red-shaded area is the phase transition region for bulk MoTe2 crystals during cooling and warming, respectively.

2D Mater. 5 (2018) 044003
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find that both the upper bound and the lower bound 
of the Barkhausen zone extend approximately linearly 
when sample thickness is reduced. This phenomenon 
infers that the pinning effect enhances linearly when 
sample’s layer number decreases, suggesting a pos-
sible surface origin of the pinning effects. In contrast 
to the Barkhausen effect observed in ferromagnets, 
where the phase pinning is generally believed to origi-
nate from lattice defects [22, 23], little is known about 
the exact nature of the ‘phase pinning defects’ in thin 
MoTe2. The phase boundary of Td and 1T′ MoTe2 is 
basically a stacking fault which could be pinned for 
various causes. First of all, one reasonable ansatz is that 
such surface related pinning comes from local strains 
at the MoTe2/substrate interface, where the corru-
gated, amorphous SiO2 substrate induced a random 

distribution of strain at the MoTe2 sample. Thinner 
samples conform better to such substrate corrugation, 
thus results in higher strain. Secondly, the likely pres-
ence of residual photoresist at the surface of the thin 
MoTe2 samples could also be a source of local strain 
which results in phase pinning. The third possibility 
is that atomic defects at the MoTe2 samples [36] can 
act as phase pinning defects, but it is highly unclear 
why more defects appears in thinner samples, since 
mechanical exfoliation and e-beam lithography are 
gentle device fabrication techniques, which should not 
result in additional defects in the samples. The exact 
nature of such surface related pinning effects will be 
an interesting topic in future local probe experiments. 
No transition signal is observed for samples at or below 
6 nm (see supplementary materials figure S4). Since 

Figure 3. Thickness dependent phase transition temperature ranges. Barkhausen zone as a function of sample thickness. 
Barkhausen zone is extracted by the highest/lowest temperature that Barkhausen jumps appear, and are plotted by blue bars and red 
bars for cooling and warming, respectively. Shaded area denotes the parameter space of temperature and sample thickness where 
Barkhausen effect is detected. For sample thicker than 100 nm, the endpoints are determined by the temperature at which cooling 
and warming curves begins to overlap.

Figure 4. Distribution of normalized resistivity kink height. Histogram of normalized resistivity kink height ∆R/R for all the 
samples (blue dots), where R is the sample resistivity at the resistivity jump, and ΔR is the respective jumps in resistivity. Red line 
shows a power law fitting. Exponent α = 1.27 ± 0.08 is obtained from the fit.

2D Mater. 5 (2018) 044003
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1T′ and Td MoTe2 share the same in-plane structure 
[14], the phase transition behavior towards the mono-
layer limit warrants further investigation.

Figure 4 plots the histogram of the normalized 
resistivity kink height (∆R/R) for all the devices 
measured. Here ∆R = R1T′ − RTd

 represents ~5% of 
the total resistivity of the sample, thus we can assign 
the total resistivity of the sample R = R1T′ ∼= RTd

. We 
found that the distribution function f  of ∆R/R from 
all the devices we measured follows a power law 
f ∼ (∆R/R)−α, with = 1.27 ± 0.08. Theoretically, 
it has been predicted that the domain size (s) of each 
Barkhausen jump has a distribution P that follows a 
power law P (s) ∼ s−β[22, 23, 28]. Mean-field theory 
gives a universal exponent β = 2 − 2/ (d + 1) for such 
power law behavior, where d � 3 is the dimension of 
the system [23]. It is reasonable to assume that ΔR is 
proportional to the total resistivity R for a given size of 
flipped domain at any given temperature, thus the size 
of the flipped domain s ∼ ∆R/R. If the Barkhausen 
effect in thin MoTe2 is 3D, then β = 1.5, which does not 
agree with our experimental observation. On the other 
hand, if there are mainly 2D phase pinning/depinning 
in thin MoTe2, then β = 4/3 ≈ 1.33, which agrees 

well with the experimentally extracted value of α. 
This result suggests that the phase transition between 
1T′ and Td in thin MoTe2 could be a rare example for 
non-magnetic Barkhausen effect in the 2D universal-
ity class. It is worth noting that the theories describing 
scaling behavior in a Barkhausen process in magnetic 
materials is far from united, much less is known for 
Barkhausen process in non-magnetic structural phase 
transition. For example, an elastic interface theory  
predicts β ≈ 1.3 for a 3D magnetic Barkhausen pro-
cess [23, 37, 38]. Thus more theoretical study is needed 
to fully understand our experimental observation.

As a further verification of the shifting and expan-
sion of the phase transition temperature, we performed 
temperature-dependent polarized Raman spectr-
oscopy on thin MoTe2 samples. The strongest Raman 
signal that distinguishes the 1T′ and the Td phases is the 
interlayer shear mode at ~13 cm−1, as measured in the 
parallel-polarized configuration [14]. Centrosymme-
try breaking in the Td structure leads to a Raman active 
mode at 13 cm−1 (denoted as the A peak), whereas 
this mode is Raman inactive in 1T′ MoTe2. Figure 5(a) 
shows the Raman spectra between 6 cm−1 and 20 cm−1 
of a 22 nm-thick MoTe2 sample at different temper-

Figure 5. Temperature dependence of polarized Raman spectra for the signal at 13 cm−1. Temperature dependent Raman spectra 
around 13 cm−1 for (a) a 22 nm sample, (c) a 155 nm sample. Temperature dependence of the Raman intensity for the 13 cm−1 peak 
for (b) a 22 nm sample, (d) a 155 nm sample. Blue for cooling and red for warming in (b) and (d).

2D Mater. 5 (2018) 044003
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ature during sample cooling (left panel) and warming 
(right panel). The temperature-dependent evolution 
of the intensity of the A peak is shown in figure 5(b). 
One can find that the intensity of the peak increases 
between 235 K and 130 K during sample cooling, and 
starts to decrease above 280 K during sample warming. 
Up to 350 K, the A peak is still observable for the 22 nm 
sample. This is in stark contrast to bulk MoTe2, where 
such change in the intensity of the A peak is completed 
within 215 K to 280 K [14]. Figure 5(c) is the temper-
ature-dependent Raman spectra of a 155 nm-thick 
MoTe2 sample between 6 cm−1 and 20 cm−1, which 
shows intermediate behavior between bulk and the 22 
nm-thick MoTe2. The observation in figure 5 is con-
sistent with resistivity measurement, showing enhanc-
ing Thysteresis with samples of reducing thickness.

Conclusions

We report the first observation of the Barkhausen 
effect in the first order structural phase transition 
between the two metallic phases, e.g. the 1T′ phase and 
the Td phase, of MoTe2 thin flakes. The temperature 
range of the Barkhausen zone increase linearly with 
reducing thickness, pointing to a surface origin of the 

phase pinning defects. The distribution of normalized 
resistivity jumps (∆R/R) has a power law dependence 
with exponent α = 1.27 ± 0.08, suggesting an 
underlying scaling behavior. Temperature-dependent 
Raman spectroscopy also detects thickness dependent 
temperature ranges for the phase transition, consistent 
with data from transport measurement.

Methods

The bulk 1T′ MoTe2 crystals were synthesized by 
chemical vapor transport method [15, 39–43], and 
few-layer samples were mechanical exfoliated from 
bulk crystals and deposited onto silicon wafer with 
300 nm SiO2. Standard electron beam lithography and 
metallization processes were performed to pattern 
multiple electrodes on few-layer MoTe2 devices for 
four-probe measurements. The electrodes were made 
of 5 nm Cr/50 nm Au. Resistivity measurements were 
performed in PPMS with lock-in amplifiers. Speed 
of temperature sweep in the resistivity measurement 
is 5 K min−1. Higher and lower sweeping speeds are 
performed to confirm full thermalization of the sample 
during the measurement. Raman measurements were 
performed on exfoliated few-layer MoTe2 in a confocal 

Figure 5. (Continued)

2D Mater. 5 (2018) 044003
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back-scattering geometry using a Horiba Jobin Yvon 
LabRAM HR Evolution spectrometer, equipped with 
1800 gr mm−1 gratings and a liquid-nitrogen-cooled 
CCD. We used the λ = 514 nm line of an Argon laser 
for excitation. The BragGrate notch filters allow for 
measurements at low wave numbers. Polarized Raman 
spectra were measured in a-a configuration.
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