Lecture 13

. . . 1
Suppose dephasing collisions occur with a_rate T
2

Then the number of collisions dN_ occurring in a time interval dt is

aN, =N, & N, =N, &
2 T2
= Do LN S NN
T, T
N —(Z+i,)t . / .
=> |P(t)=—Nexe * % " =—Nexe """

Therefore the macroscopic polarization decays at a rate

1 r 1

=—4 —
T, 2 T,

A common notation in the literature defines

1
? =Y =¥, TV =energy decay rate
1

— = polarization decay rate
2
Note that, in the absence of “extra dephasing” such as pure dephasing collisions, one would have

T,=2T,

In general, T, <2T)

To recap: Ti gives the rate at which the macroscopic polarization decays. In the absence of
2

dephasing collisions, the polarization decays only because of energy relaxation, at half the rate

(since the energy is proportional to the square of the individual dipoles’ polarization amplitude).

Additional process such as elastic collisions or vibrational coupling may not reduce the amplitude

of an individual dipole’s oscillation (=> no energy decay), but may randomize its phase (or

direction), thereby causing the macroscopic polarization to decay at a faster rate.

Typical numbers @, ~10"s™
Atoms in a gas:

T,=y'=10"t010"s



T, =10°t010 s
Atoms in a solid
T, =10"°to10 s
T, =10""t010*°s

Materials show a wide range of possible 'I'1 and T2, but usually (although not

always ), T, < T;soT, = Tzl

Now we can go back to the Lorentz eqgn, for a simple dipole (see P.80)

The equation of motion for the macroscopic polarization is obtained by multiplying through

by —Ne (from P= —NeX ) and putting in the correct form of the damping:

2D D 2
d 2P+(7+£)d—P+a)§P=N—e
dt T dt m

Now we can solve to find the polarization induced in the material by an applied

electromagnetic field.

Steady — State Solution

Assume a simple harmonic incident field:
SN A it
E(t)=¢Eye

Where & = polarization vector

E, = complex amplitude

(as usual ,the real part is understood; E0 is complex => determines the phase of the field )

We therefore expect a of the form

P(t) = EPE (P, also complex; may have a different phase from E,!)

dP . - d’P -
——=lwP > =—o’P
dt dt
= after dividing out é‘oei‘”I on both sides ,we get the scalar equation for the

amplitudes:
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Note:
(1) The amplitude of the induced polarization is linearly proportional to the

driving field amplitude
(2) The proportionality constant is complex, so there is a phase shift
between the field and polarization due to the damping of the

polarization (i.e. finite T, ).

The usual procedure is to define

2
5=50;(Eor;(:Ne !
eom(

2 2 . 2
Wy =" JFHlo\y+—
o Jrialr)

Where y = electric susceptibility (dimensionless)

(Note: Guenther defines 5:;(E, but this is quite inconvenient +

nonstandard, so we will use the above definition.)
Now we have half the story .We have determined the polarization induced by the field (atomic
response to the field ), but now we must find self-consistently the effect of that polarization back
on the field — i.e. the polarization is a source term in the wave egn. Thus to understand the
propagation of light in matter, we must simultaneously solve the Lorentz eqn. and the wave eqn.

Wave eqn. with source:

As usual, begin with  V x E = _8_I§
ot
VX(VX E)z—%(Vx é):—yog(Vx I:|)
B 2
A e
2 2R
vzé_ﬂogoat_lzz:ﬂo%t_lz

This shows that a time-dependent polarization acts as a source for electromagnetic waves.



For weak fields (linear response) P= gozlé

For a harmonic driving field E = £(F)e'" we have the Helmholtz egn.

— — 1
28 (7 2 =

VIE(F) = 46,1+ 2)0"E(F) =0 Hobo =7
The form of this equation is familiar, so we can try plane wave solutions

= _Ap aiatkD)
E=cE.e

2

Plug in => —k? +i)—2(1+ ;() =0
or k? _a)_2(1+ )

As usual, one can define a complex index of refraction i so that

k* = where |A% =1+ y

Just as we saw with metals, a complex wavevector (or complex index ,or complete dielectric
constant — those are all just different ways of saying the same thing ) leads to damping .We will
come back to consider absorption in some detail , but first we should take a look at the
traditional ,familiar real index of refraction .This is important when light is propagating through

nonabsorbing, i.e., transparent media (e.g. glass !)

Consider light at a frequency much lower than the resonant frequency of the dipoles
composing the dielectric:

0 < o,
This is quite reasonable to do, since the relevant resonance frequency for most transparent

materials is somewhere in the near ultraviolet (e,g. glass ® ~ 1=200 nm )
Specifically, we consider:

2
o} — " > oy +—)
T,

So the frequency is far from the absorption resonance.

Ne? 1
= 2

= > which is real !
EM wy—w

Then ;((a))

Thus the index of refraction is

2 Ne? 1
=1 =1+———=
(o) <erl@)=te e

The fact that n is a function of frequency means that waves of different frequencies



propagate with different speeds in the medium, which is the phenomenon of dispersion.
Important features:

(1) & =" =n>1

(2) nincreases as @(A) increases (decreases)

This is the familiar behavior of the “normal dispersion” of transparent materials in the

visible and near-IR regions of the spectrum.
In real materials, there will be of course be more than one resonance frequency .That means

in general the index will have the form

n’ =1+ A
j (a)éj—a)z)

Here the strengths Aj (proportional to the “effective number of oscillators”) and the

resonance frequencies @,; are fitting parameters. In fact, very good fits to the index in

transparent media are obtained .In fact, this was known long before Lorentz came up with a
physical model explaining this formula. Often, it was expressed in the equivalent form

n’ =1+ 278112
T (27-47)

Which is known as Sellmeier’s formula

Of course, the classical model cannot predict the resonance frequencies, nor can it predict the
amplitudes A (we’ll see that further below). Those parameter can in principle only be obtained

from quantum theory.
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Resonant Absorption

quency @,, the index of

We have seen that when @ is far from the atomic resonance fre

, and the dispersion is “normal“. Now we will consider what

real

refraction (or susceptibility) is

near @, .

happens when @ is

It will be convenient to define

2
T2

2

=7rad+7/nr+_;=
T2

2
T,

Awy,=y+



Then the susceptibility can be written (from P.90)
Ne’ 1
gyM (a)g—a)2 )+ia)Aa)0

x(w)=

Note that in general A@, < @, . (Only in a few special cases, such as some organic dyes, and

some solid-state laser materials such asTl: sapphire, does A@, becomes as large as ~10% *

. . 3
@, .In dilute gases, it is 10™ * smaller or even less)

Resonance approximation: @ = @),

It is useful to split this into real and imaginary parts:

.AC()O AC()O 2
"y Ne? (wo_a))_l 2 Ne? (a)o—a))/ZAa)o ( 2 )
X=x Ty = =
A A A
2&,May, (a)o—a))2+( ;’o)z &M, A, (a)o—a))2+( ;’o)z ( O_w)2+( 2"0)
o oa_ Ne

Define yy=—"—"-"
EMa,Aw,

In laser physics, it is convenient to write this as (exercise)

"__ 3 Nﬂ“syrad

° 4r? Aw,

This is useful since

N A3 = number of oscillators in a cubic wavelength

Vg = @ measure of the strength of the interaction of light with an atomic resonance

(one atom)
Aa)o = “width” of resonance, as we’ll see below

Connection to real atomic transitions:
Recall (P.76)



Is the radiative decay rate for a classical dipole oscillator? Real atomic transitions show radiative
decay rates which may vary over orders of magnitude .This is taken into account in the classical

model by writing

7rad =

Where fis called the oscillator strength of the transition.

In the classical model, f should be considered a “fitting parameter” that can be used to fit the
strength of a real resonance. It turns out (you’ll consider this in some detail in “optical wave in

|II

crystal” course) that f can be calculated from first principles in the quantum theory.

Note: large oscillator strength <>fast y, 4

<> large g,

Recall: AWy =Yg + Ve t =
T

Suppose there is no nonradiative (collisional) damping of the polarization:

2

Z=0
T,

Yor =0

= Aw, =¥,,y (pure radiative damping)
"n__ 3

0=
4r?
i.e the only thing that matters is the number of oscillators (atoms) in a cubic wavelength!

Then N3

For convenience, define a dimensionless quantity (normalized detuning)

-,

Ay =2
d Aw,

Then the susceptibility can be written =>  A@, -FWHM

Z_Z,"'il”__,’t/” Ay +i 1
Y1 (ay) 1+ (ay)
Ay .y - ” - .
— ispersive line shape” we shall see that this is responsible for
1+(Ay)

dispersion,or_phase shifts .

o1 2
| ————— :” Lorentzian line shape “ FWHM = y +— =A@, We shall see that

1+(Ay)2 T,



this part is responsible for absorption.
--see Siegman fig.2.8 (next page )

Remember that this form of } is an approximation, valid when the light frequency @ is close

to the resonance frequency @,

Recall the connection to the dielectric constant :

W =¢ =1+ y(e=¢.¢,)

¥ iscomplex=> & is complex.
We have seen before that a complex dielectric constant gives rise to optical absorption .We could
carry out exactly the same steps as in pp.44-46 to define a real index of refraction and extraction
coefficient which will describe the exponential decay of the wave as it propagates in the

medium .(this is Guenther’s approach ,)

Rather than repeat that formulation of the problem, however, we will take an alternative



approach which is particularly useful in laser theory. We begin by writing the wave equation

Where we have put a tilda over the E to remind ourselves it is the total complex field, and to

distinguish it from a new expression of the field below.

To simplify the problem, let’s consider only a plane wave propagating in the z direction.

2
[0
We know from solving the wave eqn, before that a time-harmonic wave gives an —- term and
C

hence the Helmholtz eqn, in this spirit, let’s write the field in a new way

E= 8(2)8““‘7’82) [8(2) = “envelope fn” —>can be complex]

O’E .
e =—@’E asusual
O’E (0% .., 0¢ :
> — — - ZIﬂ——ﬂzg el(a)t—ﬂz)
ot oz oz
Now let us assume the z-dependence is slow:
o’ o€
—|<2B|—
0z 0z

If we do so, the wave eqn, becomes

. e ., @
22— -pc+—(1+y)e=0
B~ —F Cz( x)

0]
Now we make the assignment|Z = —|. (In other words, it’s the real wavevector; we didn’t use k
C

since that would be inconsistent with our previous notation,in which k is allowed to be

w
complex .Also, [ =— isacommon notation in optical physics — e.g. as in Siegman ,)

oe 15
—=—"_ye
oz 27

Then

Which describes the propagation of the “slowly varying envelope ”8(2)



