
 

Lecture 13  

Suppose dephasing collisions occur with a rate 
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Then the number of collisions 
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Therefore the macroscopic polarization decays at a rate  
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A common notation in the literature defines  
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 = polarization decay rate  

Note that, in the absence of “extra dephasing” such as pure dephasing collisions, one would have  
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To recap: 
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T
 gives the rate at which the macroscopic polarization decays. In the absence of 

dephasing collisions, the polarization decays only because of energy relaxation, at half the rate 

(since the energy is proportional to the square of the individual dipoles’ polarization amplitude). 

Additional process such as elastic collisions or vibrational coupling may not reduce the amplitude 

of an individual dipole’s oscillation (=> no energy decay), but may randomize its phase (or 

direction), thereby causing the macroscopic polarization to decay at a faster rate. 

Typical numbers         
15 1

0 10 s  

   Atoms in a gas: 

 
1 6 7

1 10 10T to s      



 

                        8 10

2 10 10T to s    

Atoms in a solid       

                     

3 12

1

13 16

2

10 10

10 10

T to s

T to s

 

 




 

Materials show a wide range of possible 
1T  and 

2T , but usually (although not 

always ) ,
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Now we can go back to the Lorentz eqn, for a simple dipole (see P.80) 
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The equation of motion for the macroscopic polarization is obtained by multiplying through 

by Ne (from P Nex  ) and putting in the correct form of the damping: 
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Now we can solve to find the polarization induced in the material by an applied 

electromagnetic field. 

Steady – State Solution 

Assume a simple harmonic incident field: 
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Where           ̂  = polarization vector  

                0E = complex amplitude 

(as usual ,the real part is understood; 0E  is complex => determines the phase of the field ) 

We therefore expect a solution of the form 

       0
ˆ( ) i tP t Pe   ( 0P  also complex; may have a different phase from 0E !) 
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 after dividing out 0
ˆ i te   on both sides ,we get the scalar equation for the 

amplitudes: 
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Note:   

(1) The amplitude of the induced polarization is linearly proportional to the 

driving field amplitude   

(2) The proportionality constant is complex, so there is a phase shift 

between the field and polarization due to the damping of the 

polarization (i.e. finite 2T ). 

The usual procedure is to define 
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                   Where    electric susceptibility (dimensionless) 

                   (Note: Guenther defines P E , but this is quite inconvenient + 

nonstandard, so we will use the above definition.) 

Now we have half the story .We have determined the polarization induced by the field (atomic 

response to the field ), but now we must find self-consistently the effect of that polarization back 

on the field – i.e. the polarization is a source term in the wave eqn. Thus to understand the 

propagation of light in matter, we must simultaneously solve the Lorentz eqn. and the wave eqn. 

 

Wave eqn. with source: 

As usual, begin with  
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This shows that a time-dependent polarization acts as a source for electromagnetic waves. 



 

For weak fields (linear response) 
0P E   

For a harmonic driving field ( ) i tE r e   we have the Helmholtz eqn. 
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The form of this equation is familiar, so we can try plane wave solutions  
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As usual, one can define a complex index of refraction n so that  
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Just as we saw with metals, a complex wavevector (or complex index ,or complete dielectric 

constant – those are all just different ways of saying the same thing ) leads to damping .We will 

come back to consider absorption in some detail , but first we should take a look at the 

traditional ,familiar real index of refraction .This is important when light is propagating through 

nonabsorbing, i.e., transparent media (e.g. glass !) 

 

Consider light at a frequency much lower than the resonant frequency of the dipoles 

composing the dielectric: 

              0   

This is quite reasonable to do, since the relevant resonance frequency for most transparent 

materials is somewhere in the near ultraviolet (e,g. glass ω ~ 1=200 nm ) 

Specifically, we consider: 
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So the frequency is far from the absorption resonance. 

Then            
2

2 2

0 0

1
 

  

Ne

m
which is real ! 

Thus the index of refraction is  
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The fact that n is a function of frequency means that waves of different frequencies 



 

propagate with different speeds in the medium, which is the phenomenon of dispersion. 

Important features: 

                 (1) 
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                     (2) n increases as ( )   increases (decreases) 

This is the familiar behavior of the “normal dispersion” of transparent materials in the 

visible and near-IR regions of the spectrum. 

In real materials, there will be of course be more than one resonance frequency .That means 

in general the index will have the form 
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Here the strengths 
j

A (proportional to the “effective number of oscillators”) and the 

resonance frequencies 0 j  are fitting parameters. In fact, very good fits to the index in 

transparent media are obtained .In fact, this was known long before Lorentz came up with a 

physical model explaining this formula. Often, it was expressed in the equivalent form  
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         Which is known as Sellmeier’s formula 

Of course, the classical model cannot predict the resonance frequencies, nor can it predict the 

amplitudes A (we’ll see that further below). Those parameter can in principle only be obtained 

from quantum theory. 



 

 

Resonant Absorption 

We have seen that when   is far from the atomic resonance frequency 0 , the index of 

refraction (or susceptibility) is real, and the dispersion is “normal“. Now we will consider what 

happens when   is near 0 . 

It will be convenient to define 

                0

2 2 2

2 2 2
rad nr

T T T
         

 
 



 

Then the susceptibility can be written (from P.90) 
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Note that in general
0 0  . (Only in a few special cases, such as some organic dyes, and 

some solid-state laser materials such as
1T : sapphire, does 

0  becomes as large as ~10% * 

0 .In dilute gases, it is 
310

 * smaller or even less) 

Resonance approximation:  
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It is useful to split this into real and imaginary parts: 
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In laser physics, it is convenient to write this as (exercise) 
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This is useful since  

       
3N = number of oscillators in a cubic wavelength  

        rad = a measure of the strength of the interaction of light with an atomic resonance 

(one atom) 

        0 = “width” of resonance, as we’ll see below 

Connection to real atomic transitions: 

Recall (P.76) 
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Is the radiative decay rate for a classical dipole oscillator? Real atomic transitions show radiative 

decay rates which may vary over orders of magnitude .This is taken into account in the classical 

model by writing  
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Where f is called the oscillator strength of the transition. 

 

In the classical model, f should be considered a “fitting parameter“ that can be used to fit the 

strength of a real resonance. It turns out (you’ll consider this in some detail in “optical wave in 

crystal” course) that f can be calculated from first principles in the quantum theory. 

Note: large oscillator strength  fast 
rad  

                             large 0  
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Suppose there is no nonradiative (collisional) damping of the polarization:   
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           0 rad    (pure radiative damping ) 
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i.e the only thing that matters is the number of oscillators (atoms) in a cubic wavelength! 

 

For convenience, define a dimensionless quantity (normalized detuning)      
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Then the susceptibility can be written =>  0 -FWHM 
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dispersion,or phase shifts . 
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this part is responsible for absorption. 

--see Siegman fig.2.8 (next page ) 

 

Remember that this form of   is an approximation, valid when the light frequency   is close 

to the resonance frequency 
0  

 

Recall the connection to the dielectric constant : 
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 is complex =>   is complex. 

We have seen before that a complex dielectric constant gives rise to optical absorption .We could 

carry out exactly the same steps as in pp.44-46 to define a real index of refraction and extraction 

coefficient which will describe the exponential decay of the wave as it propagates in the 

medium .(this is Guenther’s approach ,) 

 

Rather than repeat that formulation of the problem, however, we will take an alternative 



 

approach which is particularly useful in laser theory. We begin by writing the wave equation  
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Where we have put a tilda over the E  to remind ourselves it is the total complex field, and to 

distinguish it from a new expression of the field below. 

 

To simplify the problem, let’s consider only a plane wave propagating in the z direction. 

We know from solving the wave eqn, before that a time-harmonic wave gives an 
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hence the Helmholtz eqn, in this spirit, let’s write the field in a new way  
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Now let us assume the z-dependence is slow: 
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If we do so, the wave eqn, becomes  
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Now we make the assignment


 
c

. (In other words, it’s the real wavevector; we didn’t use k 

since that would be inconsistent with our previous notation,in which k is allowed to be 

complex .Also, 
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   is a common notation in optical physics – e.g. as in Siegman ,) 
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Which describes the propagation of the “slowly varying envelope “  z  


