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- Field profile
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Note that diffraction is stronger for a smaller spot size:

_ <—the smaller the waist , the shorter the
= ‘?v-- Rayleigh range
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- large W,=>small 6 and vice versa



Wavefront curvature:

, o for z <« z, (near waist)

z
R(z)=z+-+L=1{ 2z; at z=1,
z
z for z> z.(spherical wave )

"

Beam power + aperture transmission (Siegman 17.1)

def. r*=x>+y’

= |I(r)=

2P 2.2
2le/w
TW

where P oc ﬂ|(/)|2dA=totaI power in beam

equivalent “top-hat” beam with the same peak intensity and the same total power P has

diameter d, =\/§W

- See Siegman fig.17.2.
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17.1 GAUSSIAN BEAM PROPAGATION

clreular equivalent
gaussian Ifr} “top hat”
beam

dryy = vVEw
w2
FIGURE 17.2
The equivalent “top hat"
radius for a cylindrical gaus-
sian beam.
o

All the important parameters of this gaussian beam can then be related to
the waist spot size wy and the ratio z/zp by the formulas

2
w(z) = woy/1+ (z—i;) ¥
R(z)=z+ i (5)
z

¥(z) = tan™! (i) )

In other words, the field pattern along the entire gaussian beam is characterized
entirely by the single parameter wy (or g, or zg) at the beam waist, plus the
wavelength A in the medium,

Aperture Transmission

Before exploring the free-space propagation properties of an ideal gaussian
beam, we might consider briefly the vignetting effects of the finite apertures that
will be present in any real optical system. The intensity of a gaussian beam falls
off very rapidly with radius beyond the spot size w. How large must a practical
aperture be before its truncation effects on a gaussian beam become negligible?

Suppose we define the total power in an optical beam as P = [[|a2dA
where dA integrates over the cross-sectional area. The radial intensity variation
of a gaussian beam with spot size w is then given by

= 2P e
1) = = eI, ®)

The effective diameter and area of a uniform cylindrical beam (a “top hat beam™)
with the same peak intensity and total power as a cylindrical gaussian beam will
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then be
2
P dru=v3w and Am=1‘;— )
| as shown in Figure 17.2.

An aperture significantly larger than this will be needed, however, to pass a
real gaussian beam of spot size w without serious clipping of the beam skirts.
The fractional power transfer, for example, for a gaussian beam of spot gize w
passing through a centered circular aperture of diameter 2a, as in Figure 17.3, °
will be given by

a
power transmission = —2—2 f 2are= 0 gr = ] _ g%/ (8)
mwe Jo

This figure plots this transmission versus aperture radius a normalized to spot
size w. An aperture with radius a = w transmits = 86% of the total power in
the gaussian beam. We will refer to this as the 1/e or 86% criterion for aperture
8ize.

A more useful rule of thumb to remember, however, is that an aperture with
radius @ = (w/2)w, or diameter d = 7w, will pass just over 99% of the gaussian
beam power. We will often use this as a practical design criterion for laser beam
apertures, and will refer to it as the “d = ww” or 99% criterion. (A criterion
of d = 3w which gives ~ 98.9% transmission would obviously serve equally
well.) Figure 17.4 illustrates just where some of these significant diameters for a "
gaussian beam will fall on the gaussian beam profile. g
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17.1 GAUSSIAN BEAM PROPAGATION
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FIGURE 17.4
Significant diameters for hard-edged truncation of 3 cylindrical gaussian
beam. Note that the d = *w criterion gives 99% power transmission,

but also £17% intensi y ripples and intensi y reduction in the near and far
fields.

Aperture Diffraction Effects

Optical designers should take note, however, that sharp-edged apertures,
especially circular apertures, even though they may cut off only a very small
fraction of the total Power in an optical beam, will also produce aperture diffrac-
tion effects like those shown in Figure 17.5, which will significantly distort the

intensity pattern of the transmitted beam in both the near-field (Fresnel) and
far-field (Fraunhofer) regions.

Beam Collimation: The Rayleigh Range and the Confocal Parameter

Another important question is how rapidly an ideal gaussian beam will
expand due to diffraction spreading as it propagates away from the waist region
or, in practical terms, over how long a distance can we Propagate a collimated
Baussian beam before it begins to spread significantly?

The variation of the beam 8pot size w(z) with distance as given by Equation
17.5 is plotted in Figure 17.6 for two different waist 8pot sizes wy; and Wog > wpy,
with the transverse scale greatly enlarged. The primary point is that as the
input spot size ty at the waist is made smaller, the beam expands more rapidly
due to diffraction; remains collimated over a shorter distance in the near field;
and diverges at a larger beam angle in the far field,

In particular, the distance which the beam travels from the waist before the
beam diameter increases by V2, or before the beam area doubles, is given simply

2 a _or2jw? _ l_e_ZaZ/Wz
power trans.=—— [ 27re dr =

-see Siegman fig.17.3
dia. d = 7W=>get 99% through

ignifi i i s are seen (as
H even though most of the power gets through, significant diffraction effectI oen
owever, e
le” on the beam profile — we’ll shortly see where that comes from). To get ripp b
“ripple” on

d >4.6w (see Siegman fig.17.4).



Gaussian Beam Propagation + ABCD Matrices

(following Milonni + Eberly 14.6 )

We have seen that a Gaussian beam remains Gaussian as it propagates in free space, and that the
beam radius and phase front radius of curvature ( a)(Z) and R(Z) respectively) vary

according to the formulas given above.

Now we want to see how ¢(z) —which contains both w and R — changes on propagation.

Recall = ! - 14
a(z) R(z) =w(z)

q (Z) = Z+ iz, ="complex radius” of Gaussian beam
1. Free space propagation

If q(z)=0q,,thenataposition Z, =2, +d

= Q(Zz):q2:q1+d

Note that this could be written (with malice aforethought)

_Aq +8B
Y
Cq,+D
Where
A B 1 d
= = free-space ray matrix
C D 0 1

2. Propagation through a thin lens

- 44

!

o

l
K-=5 R-~-5°

A Gaussian beam incident from the left has wavefront radius Ri, which is the same as a

spherical wave emanating from the object point at a distance S would have.



The lens (being with) will not change the beam radius

= W,=W

The beam will have a wavefront radius R2 on the right. By the imaging law, it will have the

same radius as a spherical wave converging to the image point at a distance S’ , where

1 1 1

S S f

Sign convention: R, >0,R, <0 asshown

Relating the g-parameters,

1 1 i42 1 1 id

0 B R, 7Z'W12 ’qz - R, 7Z'Wl2

1. 11
g, o f
= 4, = 1 % _Ag+B
1.1 _% .4 Co+D
q f f
Where

1
A B 1
C D -— 1
f
Which is just the ABCD ray matrix for a thin lens.
We have only dealt with two examples, but the fact that the Gaussian beam wavefronts are
spherical allows the same argument we gave for transformation of wavefronts on P.214 to be

given for Gaussian beams.

Thus the transformation of a Gaussian beam by an optical system is given by



_Ag,+B
? Cq+D

A B
Where = ray matrix of geometrical optics

C D
Remember that ABCD matrices were derived for paraxial rays, which form the normals to
spherical wavefronts. Since Gaussian beams are paraxial waves, their phase fronts are spherical,

and thus transform in the same way.

Example: focusing a Gaussian beam

(usually z, > f )

Incident beam: —=——-———-= ql:i
g, © zw, A

- A B
ropagation:
pagati C D

|—|
[N o

Equate real and imaginary parts:



Note that if Z, > f , then d=f (geometrical optics result).

(i.e. a well-collimated input beam focuses at the “focal length”).
At the beam waist, the spot size is

w owd=t |22 1

f2 0 7w, f2
1+? 1+?

0

Again, note that for z, > f ,

, af
W,

Wo

Define beam diameters, D, = 2w, Dol = 2W0’

o o MAT 4T
D°_2W°_7z(2wo) 7[/1[ ]

il

0

Define f-number f* =

(note that this is the f-number determined by the input beam diameter, NOT the lens diameter!)



4 _127=|D) 1274
T

Recall diffraction of a plane wave by a circular aperture => 321.22/1f#(we will show this

shortly); they are very close to a factor of 2 difference.
Ultimate focusing: the fastest lenses of sufficient quality to give “diffraction —limited”

performance have f f<1=

1 .
D0 ultimate ~ A Smallest achievable focal spot

o
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gaussian beam

spherical wave

FIGURE 17.16
Alternative picture of the GeMy phase shift through the wai i
5t
to an ideal spherical wave. " " "!'°"‘-_ * compared

a

FIGURE 17.17

Experimental apparatus used By
GpMy to demonstrate the

180° phase shift for an optical
beam passing through a focus.

interference
fringe region

1890, says that a beam with any reasonably simple cr i i i
extra half-cycle of phase shift in passing th{oughpn foco:fr;.i:i‘:;? e =
thisl‘:,;_me 17.17 shovrn-the simple apparatus employed by Gueyto demonstrate
;ct. In the original experiment the light diverging from a small pinhole
was re etited into two overlapping beams reflected from both a planar and a
m;r\fed mirror. Intel'feren_ce effects between the two beams then produced a set
of circular interference fringes between the two beams which could be observed
at tmmverse_plan_es near the first image of the pinhole. Gmy noticed that the
centermost fringe in this “bulls-eye pattern” changed sign from dark to light (or
vice versa) if he c!hserved the fringes at observation planes just before or just
after the focal point. This change of sign implied that the focused beam had

1\}/ somehaw_pncloed up an extra m phase shift in passing through the focus.

We will see shortly that higher-order transverse modes, because they have
more complicated transverse second derivatives in Equation 17.39, have larger




The Gouy Effect

Back to page 336, we found that the electric field had a plane-wave-like phase factor

e—ikz+i¢(z)

2
W,

A

Where tan ¢(Z) zi, Zp =
Zg

As usual, we put the beam waist at the origin, so that the phase ¢ vs. propagation is
M ¢(%)
il MR s m— "

w— ;
N S ———— pi o

.

— -l R §

=
—>Thus there is a 7 _phase shift in the wave as it passes through focus, relative to the phase an

ideal plane wave would have. This phase shift is known as the Gouy effect.
- See Siegman fig.17.16 : wave fronts shift forward by A /2 when going through focus
- Mathematically, we can see how this arises by writing the paraxial wave eqn. as

8_¢_ i V2

= 4
oz 2k T
A plane wave would have V$¢ =0= there would be no excess phase shift.
A beam, however, has a field which is confined in the transverse direction, so

V$(0¢ 0=>¢ ”"accumulates” an additional phase with propagation. It accumulates the most

phase where V$¢ is largest, i.e. within a Rayleigh range or two of the focus.

- See also Feng+Winful, opt lett.26,485(2001)




