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The generation of dark solitons in Bose-Einstein condensates with phase imprinting is studied by
mapping it into the classic problem of a damped driven pendulum. We provide a simple but powerful
scheme, designing the phase imprint for various desired outcomes of soliton generation. For a given
phase step, we derive a formula for the number of dark solitons traveling in each direction, and examine
the physics behind the generation of counterpropagating dark solitons.
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Solitons have been discovered in various classical non-
linear media, such as fluid, magnetic, and optical systems,
and have fascinated physicists for decades due to their
particlelike properties [1]. Recently, dark solitons were
observed in Bose-Einstein condensates (BECs) of dilute
atomic gases [2,3], which are described by a macroscopic
wave function. Dark solitons are produced by engineering
the phase of this wave function with a technique known
as phase imprinting, which was originally proposed and
used to create vortices [4]. Phase imprinting is described
as shining an off-resonance laser on a BEC in order to cre-
ate phase steps between its different parts. As a new tool
of manipulating matter waves, its power and limitation are
yet to be fully understood.

In this Letter we present a thorough analysis on the gen-
eration of dark solitons with phase imprinting on BECs.
Our study is greatly facilitated by a novel approach, which
maps the soliton generation into the classic problem of a
damped driven pendulum. We show how to design the
phase steps for the desired number and characteristics of
the dark solitons, and how to achieve such goals with
minimum energy injection or disturbance to the system.
Such controlled preparation of dark solitons is important
for a detailed study of their interactions. We also derive
a formula relating the winding number of the pendulum
motion to the number of dark solitons traveling in each
direction. In addition, we reveal the physics behind the
production of counterpropagating dark solitons by one
phase step. This rather mysterious phenomenon was ob-
served in a recent experiment [2], where the situation is
more complicated than our simple model. However, we
believe that the physics should be the same. Although our
study is done in the context of BEC physics, it can be
readily applied to fiber optics, where dark solitons have
potential applications in communication [5].

We consider a quasi-one-dimensional BEC, which is
now realizable experimentally [6]. Also, because the gen-
eration of dark solitons has a very short time scale, we
will neglect the trapping potential which mainly affects
the subsequent dynamics after their generation [7]. There-
fore, it is sufficient to use the one-dimensional nonlinear
Schrödinger equation
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where x is measured in units of j � 1 mm, a typical length
unit in this type of experiments, t in units of mj2

h̄ (m is the
atomic mass), c in units of the square root of n0, the av-
erage density of the condensate, and u0 �

p
4pn0asj2 is

the speed of sound, with as . 0 being the s-wave scatter-
ing length.

A dark soliton is characterized by a local density mini-
mum moving with a constant speed against a uniform back-
ground of unit density [5,8]. It has three characteristics, the
depth of its density minimum, the phase step over its den-
sity notch, and its velocity. All three are related to each
other and can be specified by its velocity. The nonlin-
ear Schrödinger equation is exactly solvable by the inverse
scattering method [8], according to which the generation of
dark solitons is determined by the Zakharov-Shabat (ZS)
eigenvalue equations,
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1 u0c�x, 0�U2�x� � lU1�x� , (2)

i
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2 u0c��x, 0�U1�x� � 2lU2�x� , (3)

where c�x, 0� is the initial wave function, such that
jc�x, 0�j ! 1 as jxj ! `. The ZS equations can have
real discrete eigenvalues li with magnitude smaller than
u0. Corresponding to each li , a dark soliton with velocity
2li will be generated. For phase imprinting, we have
c�x, 0� � eiS�x�, where S�x� is the imprinted phase. For
simplicity and without loss of generality, we will limit our
attention to the right phase steps, which increase from the
left to the right and approach constants at 6`.

We solve the ZS equations by mapping them into a
simple pendulum problem, which is physically more in-
tuitive and mathematically much simpler. For real eigen-
values, the quantity jU1j

2 2 jU2j
2 and the overall phase of

the two amplitudes are independent of position. For dis-
crete eigenvalues, both U1 and U2 approach zero at spa-
tial infinity. These results imply that the two amplitudes
have equal magnitudes and may be chosen to have oppo-
site phases
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This turns the ZS equations into a pair of very simple
equations

�w � 2l 1 �S 2 2u0 sinw , (5)

�r � 2u0r cosw , (6)

where the overhead dot denotes the spatial derivative. Re-
markably, Eq. (5) involves only w, and can be viewed as
a damped massless pendulum driven by the force 2l 1 �S
if we regard x as time. This analogy works even for an
inhomogeneous initial density, in which case u0 should be
replaced by the local sound speed. We will, however, leave
the discussion of density engineering [9] of dark solitons
to a future publication.

In the asymptotic regime x ! 6`, where the slope �S
of the imprinted phase turns to zero, Eq. (5) has two fixed
points: Ps�l� at w0 � sin21 l

u0
and Pu�l� at p 2 w0 (see

Fig. 1). Therefore, all pendulum motions, as governed by
Eq. (5), always start at a fixed point and finish at a fixed
point. Among the four possibilities, Ps ! Ps, Pu ! Pu,
Pu ! Ps, and Ps ! Pu, only the last one corresponds
to the ZS eigensolutions. All the other three types of
pendulum motion yield, according to Eq. (6), a divergent
r at spatial infinity, which violates the boundary condition
for the ZS eigensolutions.

That the solution Ps ! Pu is special can be appreciated
from another angle by noticing that Ps is a stable fixed
point while Pu is unstable. For a given phase S and a
general value of l, the pendulum starting at Ps almost
always is pulled into the stable fixed point Ps eventually
[see Fig. 1(a)]. Only for a discrete set of l, the motion
ends exactly at the unstable fixed point Pu, and stays there
afterwards [see Fig. 1(b)]; these special l values are just
the eigenvalues li of the ZS equations.

Our approach is novel and has certain advantages over
the existing methods for the study of ZS equations [10].
From the above analysis it is clear that we can discard
Eq. (6) and focus only on the pendulum equation (5),

FIG. 1. Motions of pendulum (5). Trajectories are schematic,
and deliberately distorted when the overlapping occurs. The
vectors are forces. (a) Motion starting from Ps and coming
back to Ps after one rotation. (b) Motion going from the stable
fixed point Ps to the unstable fixed points Pu.
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which is much simpler than the ZS equations. For example,
we solve Eq. (5) for the case of the “sudden” limit in which
the phase imprinted is a step function [11]. The corre-
sponding force is a d function, �S � Dd�x�, which im-
parts an angular change of the pendulum equal to the step
height. This should make up the phase difference between
the unstable and stable fixed points, �p 2 w0� 2 w0 �
p 2 2 sin21 l

u0
. So only one soliton can be generated,

and its speed is l � u0 sinw0 � u0 cos�D�2�. Later, we
will provide analytic solutions for another case, where
the phase-step width is finite and multiple solitons can be
generated.

More importantly, the simplicity of our approach allows
us to ask and answer the inverse question, “What phase
step is needed to produce a specified dark soliton?” We
can design the phase imprint for dark-soliton generation
with the following steps: (1) pick a l, the soliton that
one wishes to create; (2) choose a curve, �w � f�w�, con-
necting the pair of fixed points Ps�l� and Pu�l� in Fig. 2;
(3) solve for w�x� from this curve, and substitute it into
Eq. (5) to obtain S�x�. The obtained phase step S�x� will
create the soliton of velocity 2l.

Obviously, there is an infinite number of paths connect-
ing a pair of Ps and Pu, so there is an infinite number of
different phase steps that generate a certain dark soliton.
We can optimize our design of the phase step, such as the
minimization of energy injection into the system or equiva-
lently the noise output accompanying the generation of the
dark soliton. The energy injection by imprinting a phase
step S�x� is given by

E �
Z `

2`
dx

�S2

2
�

Z p2w0

w0

dw
�S2

4l 2 4u0 sinw 1 2 �S
.

(7)

This is a functional in �S. A variation over �S,
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FIG. 2. Phase trajectories of a damped driven pendulum of
zero mass. Dotted lines are drawn for constant forces 2l; the
solid lines are for changing forces 2l 1 �S. The arrows indicate
the directions of pendulum motion. The full circles are the stable
fixed points Ps; the open circles are the unstable fixed points Pu.
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d

d �S

µ �S2

4l 2 4u0 sinw 1 2 �S

∂
� 0 , (8)

combined with Eq. (5), yields the designing curve �w �
22l 1 2u0 sinw (curve 1 in Fig. 2) and the optimum
phase step

S�x� � 4 tan21

µ
u0 2 lq
u2

0 2 l2
tanh�x

q
u2

0 2 l2�
∂

. (9)

This phase step generates a soliton of velocity 2l, while
producing the smallest possible disturbance to the system.
This “best” phase step varies monotonically, and resembles
the shape of the phase step used in experiments. However,
the minimum energy injection,

E � 8u0

∑
tan

µ
p

2
2 w0

∂
2

µ
p

2
2 w0

∂∏
sinw0 , (10)

still exceeds the energy of a pure dark soliton,

Es �
4
3 u0 cos3w0 . (11)

This exposes the limitation of phase imprint: there are
always some noise and possibly other solitons generated
along with the desired dark soliton.

The number of dark solitons that can be generated by a
phase step is related to the winding numbers of the pendu-
lum motion in a simple way. Earlier we mentioned that for
a general l the pendulum starting at a stable fixed point
Ps�l� comes back to either Ps�l� or Pu�l� after a number
of complete rotations. We call the number of full rota-
tions completed the winding number W�l�. The winding
number remains the same as l varies between the eigen-
values and increases by one when it crosses each eigen-
value [12]. Therefore, the number of eigenvalues in the
allowable range �2u0, u0� is given by the simple formula
Ns � W�u0� 2 W �2u0�, which yields the total number of
dark solitons that can be generated by the phase step. Simi-
larly, the number of dark solitons that moves to the right is
given by Nr � W�0� 2 W �2u0�, and the number moving
to the left is given by Nl � W �u0� 2 W�0�.

With this simple and interesting relation between the
number of dark solitons and the winding number, we can
design phase steps to produce exactly n dark solitons. This
is achieved by finding a phase step that yields W�u0� � n
and W�2u0� � 0. Such a phase step S�x� is obtained with
Eq. (5) by drawing a path in Fig. 2 connecting w � p�2
and w � 2np 1 p�2, the fixed points of the pendulum
driven by the constant force 2u0. At the same time, we
make sure that the path lies below the curve, �w � 6u0 2
2u0 sinw, the darkened dashed line in Fig. 2 [13]. For
example, curve 3 in Fig. 2, which represents a linear phase
step to be discussed below, generates exactly two dark
solitons.

Finally, we apply our results to a simple but very useful
case, the linear phase step, whose slope is �S � a�a . 0
for jxj , a and zero elsewhere. The phase steps created
in the present experiments [2,3] can be well modeled by
034101-3
this linear phase step. For this simple case Eq. (5) can be
solved analytically, and the eigenvalues li are given by the
roots of

l2 2 u2
0 1 l

a

2aq
u2

0 2 l2
�

q
�l 1

a

2a �2 2 u2
0

tan�a
q

�l 1
a

2a �2 2 u2
0�

. (12)

The two winding numbers W�u0� and W �2u0� of the lin-
ear phase step can also be computed exactly, yielding the
following simple formula for the number of dark solitons
generated by the phase step

Ns � Int

µ
1
p

s
a2

4
1 u0aa

∂

2 Int

µ
1
p

s
a2

4
2 u0aa

∂
1 1 , (13)

where Int takes the integer part of the real numbers, and
the second term is to be omitted if aa , 4u0. With both
Eqs. (12) and (13), we obtain the soliton velocities, and
find the number of solitons generated. In Fig. 3, we plot
the total number of solitons generated and the nmber of
solitons traveling to the right. As a whole, Fig. 3 can serve
as a reference table for experimentalists to find the right
parameters, the step height and step width, to generate the
desired number of solitons traveling in each direction. A
figure of the same type is seen in Ref. [14].

The generation of left-moving dark solitons by a right
phase step (the focus of our paper) can be understood
intuitively. Once a right phase step � �S $ 0� is imprinted
on a BEC cloud, atoms in the step area will start moving
to the right. Since the atoms outside of the step area do
not move, a dip with a bump to its right will appear as
a result (see Fig. 4). Because of the stronger repulsive
interaction from the bump, the dip will be pushed to the
left. As dark solitons come into form in the dip, one would
expect that the dark solitons generated by a right phase step
would always move to the left. Indeed, a comparison of
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FIG. 3. (a) Number of solitons. (b) Number of solitons trav-
eling to the right. The numbers, such as “0, 1, 2, . . . ,” in the
figure mark the number of solitons generated in the parameter
regions defined by the solid lines.
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FIG. 4. Generation of counterpropagating dark solitons. Two
snapshots are taken at t � 3.0 and t � 4.0. This initial phase
step is a tanh function, S�x� � a�tanh�2x�a� 1 1��2, with
u0 � 1.0, a � 3.6, and a � 3.5p .

Figs. 3(a) and 3(b) shows that it is much easier to generate
left-moving dark solitons than the right-moving ones.

However, right-moving dark solitons do get generated
with the correct choice of height and width of the right
phase step, as indicated by the areas marked with nonzero
numbers in Fig. 3(b). Such counterpropagating dark soli-
tons are indeed observed experimentally [2]. Our diagram
Fig. 3 shows that it is even possible to generate a single
dark soliton that travels in the “wrong” direction. To un-
derstand this rather mysterious phenomenon, we plot the
time evolution of the soliton generation in Fig. 4. The in-
tuitive picture discussed in the previous paragraph is still
correct at the initial stage (Fig. 4, t � 3.0), where the two
dips do move to the left. A short time later �t � 4.0�,
the deeper dip reverses its direction and starts to move to
the right. This is accompanied by a slippage of 2p in the
phase step [Fig. 4(c)], which can take place when the den-
sity at the bottom of the dip reaches zero. In Ref. [15], a
conservation law was established for the sum of the soli-
034101-4
ton momenta and the field momentum defined as the total
phase difference S�1`� 2 S�2`�. Therefore, the veloc-
ity reversal of the deeper dip must be due to the exchange
of momentum with the field.
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