
0.1 Power spectrum

A spectrometer of course does not measure ε(ω), just as a photodetector does not measure ε(t). They

use ’square-law’ detectors to measure

I(ω) ∝ ε̃∗(ω)ε̃(ω)

I(ω) ∼ e−
a
2

(ω0−ω)2

a2+b2 (Gaussian)

= e
−(4 ln 2)

(ω0−ω)2

(∆ωp)2

where ∆ωp is the power spectrum FWHM

∆ωp = 2
√

2 ln 2

√
a[1 + (

b

a
)2]

Note that as the ’chirp parameter’ b is increased, the spectral width is also increased. In other

words, if you start with an unchirped pulse with fixed duration τ = 1√
a
, then as chirp is added (b 6= 0),

the spectral bandwidth of the pulse increases.

def. time-bandwidth product

∆fp · τp =
2 ln 2

π

√
1 + (

b

a
)2 (using τp =

√
2 ln 2

a
)

' 0.44

√
1 + (

b

a
)2 (for Gaussian pulses)

The time-bandwidth product is a minimum for b = 0(no chirp). Such a pulse is called transform-

limited.

From another point of view, suppose you could independently measure I(t) and I(ω). Then if

F [
√
I(t)] =

√
I(ω)

then the pulse is transform-limited. (The proof is left as a homework exercise).

If you measured I(t) and I(ω), and the pulse had any chirp on it, then the spectral width will be

larger than that of a pulse of the same length τp; that is why we say it is not transform-limited. In

the language of Fourier transforms, the chirped pulse requires more frequency components to make

up the pulse than a transform-limited one.

More generally, ∆ωp and τp can be seen as Fourier transforms of each other.
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Figure 1: Comparison between cases of different chirp parameter b. In (c), blue solid line corresponds
to (a), red dash line corresponds to (b).
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Figure 2: Temporal pulse profiles and the corresponding spectra (normalized).

Time-bandwidth product

∆ωp · τp ≥ 2πcB

also called the ′uncertainty principle′

where cB is a numerical constant of order unity, depending on the pulse shape. (note ∆fp ·τp ≥ cB)

Transfer-limited pulses have minimum time-bandwidth product (i.e. equality)

Table 1: Examples of standard pulse profiles.

Field
envelope

Intensity profile τp(FWHM) Spectral
profile

∆ωp(FWHM) cB

Gauss e−(t/τp)2

1.177τG e−(ωτG)2/2 2.355/τG .441
sech sech2(t/τs) 1.763/τs sech2(πωτs/2) 1.122/τs .315

Lorentz [1 + (t/τL)]−2 1.287/τL e−2|ω|τL 0.693/τL .142
asym. sech [et/τa + e−3t/τa ]−2 1.043/τa sech(πωτa/2) 1.677/τa .278

Note the different shapes and spectra for different functional forms all with the same FWHM

τp(Figure 2)

Note also that for arbitrary pulse forms, the FWHM may not be defined. Then some other measure

of the width must be used (typically the r.m.s.), resulting in a different numerical value of cB .

0.2 Pulse Propagation

So far, we have considered the temporal and spectral descriptions of optical pulses. Now we want

to consider propagation of these pulses. At first, we will consider only propagation in linear,

homogeneous, isotropic media (like glass!). Now, we must consider the spatially-varying electric
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field, either in the time or frequency domain:

ε̃(ω)→ ε̃(z, ω), ε̃(t)→ ε̃(z, t)

linear propagation:

you may recall the general approach from linear response theory:

1. given ε̃(z, t) at the input to the linear system, decompose into its frequency components via

Fourier transformation:

ε̃(zi, ω) = F [ε̃(zi, t)]

2. given the linear response function of the medium, propagate each frequency component through

the medium:

ε̃(z, ω) = R(ω)e−iΨ(ω)ε̃(zi, ω)

where R(ω) is (real) amplitude response (describes linear loss), Ψ(ω) is (real) phase response

(describes dispersion)

3. find the time-domain field at the output by inverse Fourier transformation:

ε̃(z, t) = F−1[ε̃(z, ω)]

The main question will therefore be, for propagation in some medium or linear optical system,

what is the response funciton?

For propagation in a linear dielectric, we find the response by considering the Maxwell wave eqn.

(
∂2

∂z2
− µ0ε0

∂2

∂t2
)ε(z, t) = µ0

∂2p

∂t2

(For now we will consider only plane waves, so we can ignore the transverse Laplacian ∇2
t =

∂2

∂x2 + ∂2

∂y2 , which is responsible for diffraction of finite-size beams. More on that later!)

As usual, for a linear medium one wants to start with a polarization p = ε0χε. But, we need to be

careful. In the time domain, the field induces a polarization, which acts as a source term, modifying

the field, and so on. Thus the field (and the polarization) depend on their past history, which can

be highly nontrivial. This makes a direct time-domain solution for an arbitrary propagation problem
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difficult. In the time domain

p(z, t) = ε0

t∫
−∞

χ(t′)ε(z, t− t′)dt′

where χ(t′) is the (casual) linear susceptibility, i.e. the impulse response of the medium.

Much easier: in the frequency domain we have simply

p̃(z, ω) = ε0χ̃(ω)ε̃(z, ω)

(Note that p̃(ω) and p(t) are just Fourier transforms of each other.) Thus all we need to do is to

solve the wave eqn. for harmonic waves, and the temporal response is obtained by summing up all

the harmonics (i.e. Fourier transforming).

We need to only consider ε̃(z, ω) = Ẽ(z, ω)eiωt, Ẽ(z, ω) is envelope function in frequency domain.

The source term is

∂2

∂t2
p̃ = ε0χ̃(ω)

∂2

∂t2
ε̃

= ε0χ̃(ω)Ẽ(z, ω)(−ω2eiωt) = −ω2ε0χ̃ε̃

The wave eqn. becomes

(
∂2

∂z2
− µ0ε0

∂2

∂t2
)ε̃ = −ω2µ0ε0χ̃ε̃

(
∂2

∂z2
+ µ0ε0ω

2)Ẽ = −ω2µ0ε0χ̃Ẽ

=⇒ Helmholtz eqn.

[
∂2

∂z2
+
ω2

c20
(1 + χ̃)]Ẽ(z, ω) = 0, c20 =

1

µ0ε0

As usual, we define the complex dielectric constant

ε̃ = 1 + χ̃(ω)

and index of refraction

ñ =
√
ε̃
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0.3 Review: Lorentz model

For those not completely comfortable with this model, see Siegman Lasers chapter 2. Basically, it

gives the simplest possible model for the susceptibility, namely that the material response can be

modeled as a simple harmonic oscillater. In general, determining χ̃ from first principles requires a

quantum-mechanical calculation of the atomic response to an applied field. The classical model works

quite well, however, if we accept that certain parameters (resonant frequency, damping, and oscillator

strength) must be taken from experiment. (The precise relation between the two models is treated in

depth in 539.)

Skipping many important details, the essential idea is to consider the dielectric to be composed of

electrons on springs:

F = ma

− e

m
ε− ω2

ax− γ
dx

dt
=
d2x

dt2

− e
mε : external field; −ω2

ax : spring; −γ dxdt : damping.

The induced polarization is

p = −Neχ, N = number of oscillators per volume

=⇒

Ne2

m
ε̃ = ω2

ap̃+ γ
dp̃

dt
+
d2p̃

dt2

If the driving field is harmonic, so will the polarization

ε̃ = Ẽeiωt, p̃ = P̃ eiωt

=⇒the amplitudes obey

Ne2

m
Ẽ = ω2

aP̃ + iωγP̃ − ω2P̃

=⇒

P̃ =
Nfe2

m

ω2
a − ω2 + iωγ

Ẽ = ε0χ̃Ẽ

where χ̃ = Nfe2

mε0
1

ω2
a−ω2+iωγ , and we have introduced a ’fudge?? factor’ f , called the oscillator

strength, which is required to model real dielectric media ( can be calculated in quantum theory).
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As you recall, the complex susceptibility is responsible for both loss (or gain) via the imaginary

part, and dispersion (frequency-dependent index of refraction) via the real part. In laser gain or

saturable absorber media, the resonant susceptibility must be considered, i.e. ω ' ωa. We will return

to the discussion of this case in treating mode-locked lasers. For the moment, we are considering only

propagation in dielectrics far from any resonances (e.g. visible light in glass).

For ω � ωa or ω � ωa. γ can be neglected, and χ̃ is real (no loss), χ̃ = Nfe2

mε0
1

ω2
a−ω2

n2 = 1 + χ = 1 +
Nfe2

mε0

1

ω2
a − ω2

Sometimes this is expressed in terms of wavelength:

1

ω2
a − ω2

=
1

(2πε0)2

λ2λ2
a

λ2 − λ2
a

Plugging this in the expression for n2 above yields the Sellmeier equation.

Now that we have n2(ω), we can go back to the Helmholtz equation:

[
∂2

∂z2
+
n2ω2

c20
]Ẽ(z, ω) = 0

or

[
∂2

∂z2
+ β2]Ẽ = 0

where β = nω
c0

=propagation constant.

The solutions are obvious:

Ẽ(z, ω) = E0e
−iβz

for a wave propagating in the +z direction.

Therefore the meterial response function we were looking for is just

e−iβ(ω)z, β(ω) =
n(ω)ω

c0

Note that β is a fairly complicated function of ω. While it is not difficult to calculate numerically

pulse propagation using the complete expression for β(ω), we can only proceed analytically and gain

any physical insight if we make some simplifications.

Note: when considering pulse propagation in waveguides, then the relevant propagation constant

β is not the material constant n(ω)ω
c0

, but is the β determined from the waveguide eigenvalue problem.
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Figure 3: Typical waveguide dispersion diagram. (see 537 notes p. A19.1)

We still have transfer function?? e−iβ(ω)z, where β(ω) is waveguide propagation constant.

0.4 example: Gaussian pulse propagation in a dispersive medium

(This follows Segman p.336)

input pulse:

ε̃0(t) = e−Γ0t
2

eiω0t

Ẽ0(ω) = e−
(ω0−ω)2

4Γ0

Γ0 = a0 − ib0. After propagating a distance z, the frequency-domain field will be

Ẽ(z, ω) = Ẽ0(ω)e−iβ(ω)z

Approximation:

Suppose that in the vicinity of the carrier frequency ω0, the propagation factor β(ω) varies slowly(Figure

4), and the Tayler expansion to the second order gives
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Figure 4: β(ω) varies slowly around ω0.

β(ω) ' β(ω0) +
dβ

dω
|ω0

(ω − ω0) +
1

2

d2β

dω2
|ω0

(ω − ω0)2

= β(ω0) + β′(ω − ω0) +
1

2
β′′(ω − ω0)2
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