
Lecture 10 

Classical theory of dispersion  

Up to this point, we have taken the linear constitutive relations D E  and 
B H

 for 

granted ,with   and 


 experimental parameters .We have seen that the index 
n r r 

 is 

determined by   and 


, but we have no microscopic picture of why r  might be 1 .(As 

usual, we are ignoring magnetic materials and considering 
1r 

, as we can for most of optics .) 

 

Also , we have considered the propagation of light in free space and linear isotropic media , but 

we have no picture of why light can be emitted (i.e. generated ).The flip side of that is that we also 

have no microscopic picture of optical absorption . 

 

The so-called Lorentz model, or classical electron oscillator (CEO) model, gives a purely classical 

picture of both the index of refraction and the emission + absorption of light .This classical model 

turns out to still have a few “free parameters“ which cannot be calculated from first principles , 

but must be obtained from experiments, as we shall see. Those free parameters (“resonant 

frequency” and “oscillator strength”) can only be predicted on the basis of a quantum-mechanical 

theory of matters. 

 

The starting point if the model is the recollection that electromagnetic waves are generated by 

accelerating charge or, equivalently, by the time-varying currents. We all know that antennas (e.g. 

dipole antennas) are useful for generating e.m. waves in the radio frequency region of the 

spectrum .However, there are no antennas for optical-frequency e.m. waves!! Light is generated 

by atoms or molecules, not tiny metal antennas! 

 

Lorentz proposed that atoms be considered to be small (   in size) harmonically oscillating 

dipoles. 

      

Dipole moment ,P er r  electron-nucleus separation resonant frequency 0  determined 

from experiment. 

 

In a laser class, you will consider in more detail how real atoms can behave as classical dipole 

oscillators. For our proposes, we can be very pictorial. 

 

Suppose an atom has two (relevant) quantum states: 



 

    

     1 = symmetric (e.g. s-like ) wavefunction  / energy 1E  

     2 = antisymmetric (e.g. p-like ) wavefunction  / energy 2E  

Now suppose that somehow you can put the atom in a superposition of these two states: 

     1 2tot     

Consider the average position of the electron as a function of time: 

       *    tot totr t r dV  

And remember that  
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The average position (i.e. the 

dipole moment ) oscillates with  

the energy difference  

between the two states !! 

 

For a pictorial view of how an atom can look like an oscillating dipole , see Fowles fig.8.8. 

 


