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We find that in integrable quantum systems there exist two time scales. One is the Ehrenfest time
below which the system is classical; the other is the quantum revival time beyond which the system
is fully quantum. In between, the quantum system can be well approximated by classical ensemble
distribution in phase space. These results can be summarized in a diagram which we call Ehrenfest
diagram. We derive an analytical expression for Ehrenfest time, which is proportional to ~−1/2.
According to our formula, the Ehrenfest time for the solar-earth system is about 1026 times of the
age of the solar system. We also find an analytical expression for the quantum revival time, which is
proportional to ~−1. Both time scales involve ω(I), the classical frequency as a function of classical
action. Our results are numerically illustrated with a simple one dimensional integrable model.
We show that similar results exist for Bose gases, which may provide an experimental platform for
measuring these time scales.

I. INTRODUCTION

A quantum system is expected to become classical in
the limit ~ → 0. However, how this exactly happens
is highly non-trivial and has been studied intensively in
the field of quantum chaos [1]. The issue of quantum-
classical correspondence was noticed as early as in 1927
by Ehrenfest. For a particle with mass m moving in a
potential V (x), Ehrenfest demonstrated that the expec-
tation values of the particle’s position and momentum
follow Newton-like equations [2]

d

dt
〈x̂〉 =

〈p̂〉
m

(1)

d

dt
〈p̂〉 = −〈dV (x̂)

dx̂
〉 (2)

where 〈·〉 is the expectation value of the operator. These
two equations are now known as Ehrenfest theorem,
which offers a hint on how quantum and classical dynam-
ics may be related. In particular, when the wave function
is narrow enough and/or the potential V (x) varies grad-

ually in space, we approximately have 〈dV (x̂)
dx̂ 〉 ≈

dV (〈x̂〉)
d〈x̂〉 .

This means that the evolution of expectation values of
position and momentum would follow exactly the New-
ton’s equation of motion. However, an initially well-
localized wave packet will spread, and the expectation
values of its position and momentum will eventually de-
viate from the classical dynamics when the width of the
wave packet is no longer small. Ehrenfest time τ~ is the
time scale when such a quantum-classical correspondence
breaks down [3–12].

In this work we study systematically the quantum-
classical correspondence in integrable systems. We find

∗Electronic address: wubiao@pku.edu.cn

that beside Ehrenfest time there exist another time scale
when quantum revival occurs. This time scale is quan-
tum revival time Tr [13]. It is similar to the time scale
in quantum kicked rotor beyond which the true quantum
phenomenon, dynamical localization or quantum reso-
nance, occurs [14]. Between Ehrenfest time τ~ and quan-
tum revival time Tr, a quantum integrable system can be
well approximated by classical ensemble distribution in
phase space.

Furthermore, we are able to derive analytical expres-
sion for both Ehrenfest time τ~ and quantum revival time
Tr, both of which are intimately related to ω(I), the clas-
sical frequency as a function of classical action. We find
that τ~ ∝ ~−1/2 and Tr ∝ ~−1.

For many specific systems, we find that the Ehrenfest
time has a simple form τ~ = cTc(I/~)1/2, where Tc is the
period of a classical motion, I is the corresponding ac-
tion, and c is a dimensionless constant of order one. Our
results are applied to many concrete systems. Generally,
for systems which we usually regard as quantum systems,
their Ehrenfest times are short; for systems which we usu-
ally consider as classical systems, their Ehrenfest times
are long. For example, for a hydrogen atom in the ground
state, we have τ~ = 0.5Tc; for the earth orbiting around
the sun, we have τ~ = 2.3×1036Tc while the age of the so-
lar system is only 0.5× 109Tc. Therefore, Ehrenfest time
may be used as an indicator whether we should treat a
given system as quantum or classical.

In the end we consider an integrable system of Bose gas
for which its effective Planck constant is 1/N [15], where
N is the total number of the particle. When N is small,
the Bose gas is quantum and when N is large it is well
approximated by the mean-filed theory [16]. We also find
two time scales, the Ehrenfest time scales with N as N1/2

and the quantum revival time scales linearly with N . As
N can be changed in an experiment, Bose gas offers a
potential platform where the scalings of Ehrenfest time
and quantum revival time with the Planck constant may

ar
X

iv
:1

80
1.

06
38

9v
1 

 [
qu

an
t-

ph
] 

 1
9 

Ja
n 

20
18

mailto:wubiao@pku.edu.cn


2

be verified experimentally.

II. EHRENFEST TIME

Before we present our general results, it is illuminating
to look at a concrete system with numerical simulation.

A. numerical results

We consider the following one dimensional system

H =
p2

2m
+ V (x) (3)

where m is the mass of the particle and V (x) = mω2
0x

2 +
m2ω3

0x
4/~. To numerically investigate how Ehrenfest

time scales with the Planck constant, we set the Planck
constant in the Schrödinger equation as ~̃ = ~ε~, where
the dimensionless constant ~ε is varied. In our numerical
calculation, we use

√
~/(mω0) as unit of length,

√
~mω0

as unit of momentum, ~ω0 as unit of energy, and 1/ω0 as
unit of time. In this unit system, V (x) = x2 + x4.

We compare numerically the quantum and classical dy-
namics of this system. For a given classical initial con-
dition x0, p0, we construct the following Gaussian wave
packet as the initial state for the quantum dynamics,

ψ(x) =
1

(2πσ2
x)1/4

exp

{
− (x− x0)2

4σ2
x

+
ip0(x− x0)

~ε

}
,

(4)

where σx =
√

~ε/2. The quantum expectation value
〈x(t)〉 and the classical trajectory xc(t) are compared in
Fig. 1(a). As expected, they match each other for an
initial short period of time and then start to deviate. We
find that the difference |〈x(t)〉 − xc(t)| oscillates and its

peaks can be approximated by function y = a(1− e−bt2),
as shown in the inset of Fig. 1(b). The Ehrenfest time

is extracted from these numerical results as τ~ =
√

1/b.
When ~ε is varied, τ~ varies. Their relation is shown in
Fig. 1(b), which clearly shows τ~ ∝ ~−1/2.

In addition, we follow Ref. [17] and compare the quan-
tum dynamics to its corresponding classical ensemble
evolution. We use the Wigner function of the Gaussian
wave packet in Eq.(4) as the initial distribution for a
classical ensemble

ρc(x, p) =
1

π~ε
exp

{
− (x− x0)2

2σ2
x

− (p− p0)2

2σ2
p

}
. (5)

where σx = σp =
√
~ε/2. We use x̄c as the classical en-

semble average of x. The agreement between the quan-
tum expectation value 〈x(t)〉 and x̄c(t) is almost per-
fect for a short period of time as shown in Fig. 1(a).
Such an excellent agreement goes beyond just the aver-
aged value and exists even in phase space. To plot the
quantum dynamics in phase space, we use the method

FIG. 1: (color online) (a) The time evolutions of a classical
particle xc(t), its corresponding quantum expectation value
〈x(t)〉, and the corresponding classical ensemble average x̄c(t).
x0 = 1, p0 = 0, and ~ε = 0.03. (b) Relationship between
between τ~ and 1/~ε, which can be fit by function y = 0.5x+
0.42. The inset is a typical fit curve of the evolution of the
peaks of the difference between classical value and quantum
expectation value. The unit of length is

√
~/(mω0) and the

unit of time is 1/ω0.

in Refs.[18, 19] to project wave function unitarily onto
quantum phase space. Roughly, the classical phase space
is divided into Planck cells and each Planck cell is as-
signed a Wannier function; these Wannier function form
a complete orthonormal basis which is used for the uni-
tary projection. The results are plotted in Fig. 2, where
we see that the agreement is excellent within Ehrenfest
time and it begins to break only after t = 26.

B. General analysis

The numerical results above also indicate that a single-
particle classical trajectory deviates from its correspond-
ing classical ensemble dynamics (see Fig. 1(a)), which
was already noticed in Ref.[17]. This fact, together with
the perfect agreement between quantum dynamics and
classical ensemble dynamics within Ehrenfest time, im-
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FIG. 2: (color online) Quantum dynamics (upper row) and
classical ensemble dynamics (lower row) in phase space. The
classical ensemble distribution is coarse-grained to Planck
cells. For this case, τ~ ≈ 26. (x0 = 0, p0 = 2) and ~ε = 0.03.

The unit of length is
√

~/(mω0), the unit of time 1/ω0, and

the unit of momentum
√
~mω0.

plies that Ehrenfest time τ~ is solely caused by the width
of a quantum wave packet that has a lower limit set by
the uncertainty relation. We exploit it to derive an ana-
lytical expression for Ehrenfest time.

We consider a classical ensemble distribution that sat-
isfies the uncertainty relation, such as the one in Eq.(4).
The evolution of this classical ensemble is governed by
Liouville equation, which is totally classical and irrele-
vant of ~. The only factor related to ~ is the fluctuations
of position and momentum in this ensemble distribution
which are limited by the uncertainty principle.

FIG. 3: A typical phase space for one dimensional integrable
system. Closed curves are energy contours. In general, the
oscillation frequencies on different curves are different. So,
the three points A, B, and C , initially close to each other,
will disperse over time due to different fequencies.

We choose three points A, B, and C in the phase space
such that they initially differ from each other by δp in
momentum and δx in position (see Fig.3). In particular,
B is the averaged point of A and C. As long as the sys-
tem is not a harmonic oscillator, these three points have
different angular velocities. As time goes by, the average
of A and C will differ significantly from B and the corre-

spondence between classical ensemble and classical single
particle will break down. When we choose δx · δp ∼ ~,
such a breakdown time is just Ehrenfest time τ~.

We define τ~ as the time when the angular difference
of A and C is 2π. We thus have

τ~ =
2π

|ωA − ωC |
(6)

≈ 2πω(I)

|ω′(I)| · |∂H/∂x · δx+ ∂H/∂p · δp|
(7)

where ω is the angular velocity and I is the action. Note
that all these quantities ω′(I), ∂H/∂x, ∂H/∂p and ω(I)
are classical and independent of ~. The Planck constant
comes in only through the uncertainty relation that re-
quires that δx ∼ δp ∝ ~1/2. So, we have

τ~ ∝ ~−1/2 . (8)

There is no need to worry about the possibility ω′(I) =
0 in Eq.(7) as it is the result of truncation of the Taylor
expansion of |ωA−ωC | to the first order. If ω′(I) = 0, one
just needs to expand it further to the second order. In
this case, we would have τ~ ∝ ~−1. One could continue
this expansion until some order becomes non-zero. If all
orders of derivative of ω(I) vanish, the system must be a
harmonic oscillator for which τ~ is indeed infinite.

For chaotic systems, it is well accepted that [3–9] that
Ehrenfest time τ~ = c

γ ln A
~ , where γ is the Lyapunov in-

dex of the chaotic system, A is a typical action, and c
is a dimensionless constant of order one. However, there
is some confusion over Ehrenfest time in integrable sys-
tems. Although it is generally believed that for integrable
systems Ehrenfest time scales with the Planck constant
as τ~ ∝ ~−α [20], it is not clear in literature what α is.
It was indicated in Ref. [11] that α = 1. However, it is
shown in some specific cases that α = 1/2 [20, 21]. Berry
and Balazs found that α = 2/3 [7]. Our work clarifies
this issue and shows analytically α = 1/2. Note that
Ehrenfest time is intrinsic to the system and is indepen-
dent of initial conditions. It can be understood as the
time scale that a classical ensemble distribution in phase
space develops structures finer than Planck cell.

C. Examples

We now apply the above result to a couple of exam-
ples to get a sense how big or small the Ehrenfest time
can become in typical macroscopic and microscopic sit-
uations. The first example is a particle of mass m in a
one dimensional box of length a. Through some simple
calculations we have

τ~ = Tc

√
2I

~
(9)

where I = pa/π is the action and Tc = 2am/p is the clas-
sical period with p being the momentum of the particle.
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Here we consider two typical scenarios, one macroscopic
and one microscopic. Imagine that a macroscopic ball
moves in a box with m = 1g, a = 1m, v = 1m/s. The
Ehrenfest time for this system is then τ~ = 2.4× 1015Tc.
Naturally, classical mechanics is enough to describe such
a system. For the microscopic scenario, we consider a
ultracold 87Rb atom moving in a optical well [22], where
m = 1.5 × 10−25kg, v = 10−3m/s (estimated under
condition T = 10−8K), and a = 10−7m (roughly the
wavelength of light). The Ehrenfest time for this case
is τ~ = 0.8Tc. So ultracold atoms must be described by
quantum mechanics. This example shows that Ehren-
fest time is a good indicator whether a system should be
regarded as quantum or classical.

The second example is a system with the inverse square
law of force, whose Hamiltonian is

H =
p2r
2m

+
L2

2mr2
− k

r
(10)

where m is the mass of the object, r is the distance to the
center, pr is the radial momentum, and L is the angular
momentum. With canonical transformation, we have

H = −mk
2

2

1

(I + L)2
(11)

where I is the action variable of the system other than
L. To simplify the calculations, we choose a special ini-

tial condition r = L2

mk , and the variances of the wave

packet are δr =
√
~/(2mω), δpr =

√
mω~/2, δθ =

1
r

√
~/(2mω), and δL = r

√
mω~/2. With some simple

calculations we have

τ~ =

√
2

3

Tc√
~[(I+L)2−L2]
L2(I+L) + L

I+L

√
~
L

(12)

For the sun-earth system, as the motion is approximate
circular motion, we have I ≈ 0 and L = 2.7 × 1039J · s.
So, we hace τ~ = 2.3 × 1036 years while the age of the
solar system is just 5 × 109 years. For a hydrogen atom
in it ground state, as L = ~ we have τ~ = 0.5Tc. This is
clearly consistent with our daily experientce that we do
not need to worry about the quantum effects in the orbits
of the solar planets while we have to describe hydrogen
atom with quantum mechanics.

III. QUANTUM REVIVAL TIME

Ehrenfest time gives us the time scale when the quan-
tum dynamics of a single particle deviates from its clas-
sical trajectory. However, as shown in Fig. 1, if one
compares the dynamics of a quantum wave packet to an
ensemble of classical orbits, the quantum-classical corre-
spondence can last much longer. This phenomenon of
course has been noticed a long time ago [17]. In this
section, we investigate how long the quantum-classical

FIG. 4: (Upper) Time evolution of the classical ensemble aver-
age x̄c(t); (Lower) time evolution of the quantum expectation
value 〈x(t)〉. Tr is the quantum revival time. (x0 = 0, p0 = 2)

and ~ε = 0.03. The unit of length is
√

~/(mω0) and the unit
of time 1/ω0.

correspondence can last in this sense. We find that for
integrable systems such a time scale is set by quantum
revival [13] and scales with the Planck constant as ~−1.

−1

0

1

−1

1

t=60 t=108 t=178 t=432

FIG. 5: (color online) Quantum dynamics (upper row) and
classical ensemble dynamics (lower row) in phase space. The
classical ensemble distribution is coarse-grained to Planck
cells. For this case, Tr ≈ 864. (x0 = 0, p0 = 2) and ~ε = 0.03.

The unit of length is
√

~/(mω0), the unit of time 1/ω0, and

the unit of momentum
√
~mω0.

A. Numerical results

We further study numerically the quantum dynamic
and its corresponding classical ensemble dynamics for
much longer times. They are compared in term of the av-
eraged position (see Fig. 4) and also in phase space (see
Fig. 5). If one is only interested in the dynamics of the
wave packet center, the quantum and classical ensemble
results match each other very well for a very long time,
up to t > 300 according to Fig. 4. After that, around
t ≈ 430, while the classical average x̄c(t) remains around
zero, the quantum expectation 〈x(t)〉 almost fully recov-
ers its original value, which is known as quantum revival.
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This quantum revival occurs again when the evolution
time is doubled.

However, if one is interested in more dynamical details,
the time scale of agreement is shortened by a few frac-
tions. According to Fig. 5, after t = τ~ ≈ 26, both are
no longer localized. However, the quantum distribution
always has more structures while the classical ensemble
distribution is rather uniformly distributed within the
energy shell. In particular, at certain times, one observes
that the quantum distribution will cluster around a few
centers, a phenominon known as fractional quantum re-
vival [13]. At t = 432, which is half of the quantum
revival time, we see that the quantum distribution be-
comes localized again.

B. Analytical results

The numerical results above show that quantum dy-
namics and its corresponding classical ensemble dynam-
ics begin to deviate from each other significantly when
quantum revival occurs . In this subsection, we derive
an analytic formula for quantum revival time. We follow
the method in Ref. [13] but with a significant modifica-
tion by introducing action variables. For a general one
dimensional integral system, its classical Hamiltonian can
always be written as H(I), where I is the action of the
system. As a result, its classical energy is also a func-
tion of the action E(I) and so is the classical frequency
ω(I) = ∂E(I)/∂I [23]. We expand the quantum wave
packet in terms of the system’s energy eigenstates and
its dynamics is then given by

ψ(t) =
∑
n

cne
−iEnt/~φn(x) , (13)

where φn(x) is the nth eigenstate and En is its corre-
sponding energy eigenvalue. The coefficients cn’s are de-
termined by the initial condition. We assume that |cm|2
is the largest and expand the eigenvalue around Em as
follows

En = Em+ω(Im)(In−Im)+
ω′(Im)

2
(In−Im)2+... (14)

where In is the action corresponding to En via E(I). Ac-
cording to the Bohr-Sommerfeld quantization rule [24],
we have

In − Im = (n−m)~ . (15)

So, the quantum phases can be written as

exp [−i(En − Em)t/~]

= exp

[
−2πi(n−m)

t

Tc
− 2πi(n−m)2

t

Tr
+ ...

]
,(16)

where Tc = 2π/ω(Im) and

Tr =
4π

ω′(Im)~
. (17)

As Tr contains ~ in its denominator, it is clear that
Tr � Tc. With this in mind, we can envision from
Eq.(16) how the quantum wave packet will evolve in time.
For an initial short interval of time, the wave packet will
oscillate with period Tc but with a decaying amplitude
due to the second-order and other higher order terms.
When the evolution time approaches Tr, the second-order
terms become multiples of 2π and, as a result, the wave
packet recovers most of its original shape. How much
it can recover depends on the third and higher order
terms and other factors. Before Tr, there can be frac-
tional quantum revivals that occur at t = pTr/q(p, q are
positive integers); they are characterized by a superposi-
tion of several localized wave packets [13]. This is exactly
what we have observed in Fig. 5.

From the above discussion, we find that the quantum
revival time Tr scales with the Planck constant as Tr ∝ 1

~ .
For the two examples mentioned in Sec. II C, according
to Eq. (17), we have

Tr1 = Tc
2I

~
, (18)

and

Tr2 =
2

3
Tc
I + L

~
, (19)

respectively.
We note that the Bohr-Sommerfeld quantization rule

is only an approximation; Eq.(15) should be corrected
to In − Im = (n − m)~ + δe. For the above analysis

to be correct, the condition ω(Im)δe � ω′(Im)
2 (n−m)2~2

should be satisfied. δe also affects how much the quantum
wave packet can recover its original shape at Tr.

IV. BOSE GASES

It is well known that the relationship between quantum
and mean field descriptions of Bose gases is essentially
quantum-classical correspondence [15, 16] with 1/N(N
is the total number of bosons) serves as effective Planck
constant. Our results above can be straightforwardly ap-
plied to any system of Bose gas which is integrable as
it was done for chaotic Bose system in Ref. [16]. We
illustrate this with a two-site Bose-Hubbard model as an
example, whose Hamiltonian is

Ĥ = −ν
2

(â†b̂+ âb̂†) +
c

2N
(â†â†ââ+ b̂†b̂†b̂b̂) (20)

where c is the strength of interaction and ν is the tun-
neling parameter. In our numerical calculation, we use ν
as unit of energy, ~/ν as unit of time. When the particle
number N is large, this system can be well approximated
by the following mean field model

Hmf = −ν
2

(a∗b+ ab∗) +
c

2
(|a|4 + |b|4) . (21)
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FIG. 6: (color online) (a) The time evolution of the averaged probability of the system is in state b according to three different
dynamics: quantum, mean-field, and mean field ensemble. (b) Ehrenfest time as a function of number of particles N , which can
be fit by y = 0.48x + 1. (c) The evolution of difference between quantum expectation value and mean field ensemble average
of occupation probability at state b. N = 200, c/ν = 2. The unit of time is ~/ν

.

Owing to the particle number conservation, |a|2 + |b|2 =
1, and the overall phase is trivial, we can introduce a pair
of conjugate variables s and θ, where s = |b|2, θ = θb−θa
with θb and θa being the phases of complex numbers a
and b. The mean field model is clearly a classical one
dimensional integrable system.

In the above discussion of quantum-classical correspon-
dence of a single particle, a point in the classical phase
space corresponds to a Gaussian wave packet of minimal
spread. For this Bose system, a mean field state a = α,
b = β corresponds to a quantum coherent state|α, β〉

|α, β〉 =
1√
N !

(αa† + βb†)N |0〉 . (22)

However, we need some effort to construct the corre-
sponding mean field ensemble distribution ρ(s, θ). We ex-
pand the coherent state |α, β〉 with Fock states |n,N−n〉,
where n is the particle number at site a,

|α, β〉 =
∑
s

ϕN (s)|N −Ns,Ns〉 , (23)

where

ϕN (s) =

√
N !

Ns!(N −Ns)!
αN−NsβNs . (24)

and s ranges over 0/N, 1/N, ..., N/N . |ϕN (s)|2 can be
regarded as a distribution of s. For this distribution, the
average of s is s̄ = |β|2 and its variance is

∆s =
|β|
√

(1− |β|2)√
N

. (25)

As θ is the conjugate of s, its distribution can be obtained
with a Fourier transform

φN (θ) =
1√
N + 1

∑
s

ϕN (s)e−iNsθ (26)

where θ takes the following discrete values:
2π 1

N+1 , 2π
2

N+1 , ..., 2π
N+1
N+1 . Numerical results show

that

θ̄ ≈ θβ − θα , ∆θ ≈ 1

2
√
N |β|

√
(1− |β|2)

. (27)
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quantum
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FIG. 7: Ehrenfest diagram. Two time scales, Ehrenfest time
and quantum revival time, are plotted as functions 1/~ε.
These two times scales mark up three regions: quantum, clas-
sical ensemble, and classical. (x0 = 0, p0 = 2) is the initial
condition for this figure.

So, ∆θ and ∆s satisfy the uncertainty
relation:∆θ∆s ≈ 1

2N . At the large N limit, N → +∞,

both |ϕN (s)|2 and |φN (θ)|2 will approach Gaussian dis-
tribution. If we denote these two Gaussian distributions
as g1(s) and g2(θ), respectively, the mean-field ensemble
distribution can be constructed as ρ(s, θ) = g1(s)g2(θ).
The three different dynamics, mean-field, mean-field
ensemble, and quantum, are compared in Fig. 6. We
find a very similar pattern as we found in Sections III
and IV.

For quantum revival, we would need the Bohr-
Sommerfeld quantization rule. How to implement this
rule in the mean field theory of a Bose gas is discussed
in Ref.[25, 26].

In conclusion, the breakdown of correspondence be-
tween quantum and mean field descriptions occurs at
time τ~ ∝ N1/2, and the breakdown of correspondence
between quantum and mean field ensemble occurs at time
Tr ∝ N . The Planck constant ~ can not be changed ex-
perimentally, but total number of bosons N can. There-
fore, the Bose gases can be used to experimentally verify
the results in this paper.

V. DISCUSSION AND CONCLUSION

In summary, we have shown that for a generic inte-
grable system there exist two different time scales, Ehren-

fest time τ~ ∝ ~−1/2 and and quantum revival time
Tr ∝ ~−1. When they are plotted in Fig. 7, they mark
up three different regions in the space spanned by ~ and
dynamical evolution time t. In the classical region, a nar-
row quantum wave packet does not spread much and its
center follows the classical particle trajectory. In the clas-
sical ensemble region, a quantum wave packet can be re-
garded as a classical ensemble distribution in phase space.
In the quantum region, quantum revival occurs and the
quantum dynamics can not even be approximated with
classical ensemble.

We call Fig. 7 Ehrenfest diagram for two reasons. The
first is to honor Ehrenfest for his pioneering work on
quantum-classical correspondence [2]. The second and
more important reason is that we expect the prominent
feature, three different regions marked up by two differ-
ent time scales, in Fig. 7 to be generic. Even for chaotic
systems, this feature is expected to persist; the differ-
ence is that the Ehrenfest time becomes logarithmic and
the quantum revival time will be replaced by other quan-
tum times that scale with ~ differently. For example, for
quantum kicked rotor, the second time is the time scale
for dynamical localization or quantum resonance and it
scales as ~−2 [14]. We may call this second time scale
quantum time. We note that this quantum time in our
integrable systems is not Heisenberg time: as indicated
in Eq.(16), the quantum revival comes from the second-
order terms in the eigen-energy expansion.

It would be very interesting to see how this kind of
Ehrenfest diagram evolves when a system changes from
integrable to chaotic. It is not clear how Ehrenfest time
changes from square root to logarithmic. For a chaotic
system, the quantum revival time is likely exponentially
long, so the quantum time in the chaotic system must
have a different cause. It is not clear what the cause is or
whether this cause may change from system to system.
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