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This is the Fresnel diffraction integral. It says that the wave at 
0P  looks like a spherical wave 

emitted from the center of the aperture, modified by the integral which now has a quadratic (or 

parabolic) phase factor in it. Remember our paraxial approximation to a spherical wave gave us a 

parabolic wave before.  

 

We shall return to a discussion of the Fresnel diffraction problem shortly. A large number of 

diffraction problems can be solved with further simplifying approximation to the integral. 

 

Fraunhofer Diffraction  

Consider the phase form  
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The Fraunhofer, or far-field approximation, consists of neglecting the first term: 
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Let max( , )W x y  in aperture (max. radius) 
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Note the similarity to the Gaussian beam  

Rayligh image
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 Observation is in far field if it is  

“many Rayleigh ranges” away from aperture  

 

Some numbers:  

2 2

max600 , x y ) 1nm   （ inch (that’s big !) 

1600z m  required! 100 5W um z cm   

 

Thus in practice, for large apertures the Fraunhofer condition is not easily satisfied. Nevertheless, 



Fraunhefer diffraction is extremely important in many (if not most) situations, since lenses may 

be used to effectively put the source and observer at infinity. To see this, rewrite the diffraction 

integral as  
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The crucial thing to note is that the phase term in the integral is linear in the aperture variables 

(x,y). 

This is the defining feature of Fraunhofer diffraction.  

 

It means that the wavefronts in the aperture are essentially plane waves. 

 

And, as we know , we can get plane waves from point sources with lenses : 

     

 

 Spherical waves diverging /converging from/forwards source/observation points. 

 

It is useful to write the Faunhofer integral in terms of some real variables, 

   Define  ,x y

k k
w w

z z

 
     

   (The reason for the minus sign will be clear momentarily.) 

Note that the units of ,x yw  are the same as for k, i.e. inverse length . 

For this reason, xw and yw  are often called spatial frequencies .In terms of these,  
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In fact, since the aperture function f(x,y) includes the effect of the aperture, the limits on the 

integral can be extended to  , and we have  
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This is just a two-dimensional Fourier transform! 

 

In fact, in most experiments we simply want the intensity distribution in the observation plane, 

so we can ignore the phase factors out front and state that  

  The Fraunhofer diffraction pattern (intensity) is the (square of the) 2-D Fourier transform of 

the aperture function. 

 

In fact, it is this realization which under pins the entire field of “Fourier optics” 

(Note that, following Guenther, we put the minus sign in the definition of the spatial frequencies 

in order to get the same form of Fourier transform equation as we had with time-frequency 

transforms.) 

 

Note on interpretation of spatial frequencies:  

e.g.  
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And we have 
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Similarly     
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Thus the angular spatial frequencies essentially measure the angle from the aperture to the 

observation point (in units of the wavevector). 

, 0x y   “low spatial frequencies” (near center of diffraction pattern ) 

,x y  large” high spatial frequencies”(near edge of diffraction pattern) 

 The fraunhofer diffraction pattern is thus the Fourier decomposition of the spatial 

frequencies required to “contract” the aperture function f(x,y). 

 

To see this another way, consider a plane wave in the aperture propagating at an angle x (i.e. 

consider just one “spatial frequency component” of the total field in the aperture) , and look at 

the spacing of the wavefronts in the aperture: 



 

Spacing = x  

Geometry: sin x x
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 The “spatial frequency” in the aperture in “lines per millimeter“ (common units ) is  
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i.e. w x  is just 2π x the inverse period of  a “grating” in the aperture plane 

Any arbitrary aperture function f(x,y) can be decomposed into its spatial frequency Fourier 

components. 

Note that if we plot the field amplitude in the aperture for a plane wave with spatial frequency 

w x (i.e. angle= x ), we have a sinusoidal function. 

 

Plane waves propagating with different k (for same
w

k
c

 ) 



i.e. at different angles 
x , thus provide a basis set for Fourier expression of the aperture 

function f(x,y). 

Recall our discussion (p.86) of the angular spectrum representation of the field in a given plane z 
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It’s the same physical idea! 

(Exercise for reader: relate the angular spectrum representation to the Fraunhofer diffraction 

integral.) 

 

Example: rectangular aperture with an incident plane wave  

Aperture function  
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The intensity in the observation plane is therefore of the form  
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Recall sinc(0)=1  =>  
0I I = max. indensity at center zeroes of sinc  are at 
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  width of sinc function = distance between zeros=
0
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Large 0x (wide aperture)   small width of diffraction pattern 

+ vice versa (just Fouries transform relation!) 

 

Interpretation in terms of spatial frequencies: 

Narrow slit  => large distribution of spatial frequencies required to generate the aerure 

function  

         => broad diffraction pattern  

              (infinity narrow => aperture =  - function => infinity wide diffraction 

pattern ) 

wide slit  => primarily low spatial frequencies required to generate aperture function  

         => narrow diffraction pattern  

               (infinity wide => diffraction pattern ~  - function !) 

Note:  slit = rect. Aperture with 0 0x y  (or vice versa ) 



 

 

 

Example: circular aperture illuminated by plane wave  

Symmetry => convert to cylindrical coordinates  

   , ,x y s   in aperture plane  

   , ,    in observation plane  

 (see Guenther for the algebra ) – dis. Lipson Appendix I 
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Aperture function  
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1st minimum is at  
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Recall in the past we have defined the f-number of a lens to be  
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Thus we get the famous formula  

     1 1 . 2 2 / #  f     radius of first minimum  

Compare this result to our Gaussian before (exercise for readers) 

 

 


