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Abstract: We discover numerically that a moving wave packet
in a chaotic billiard will always evolve into a quantum state,
whose density probability distribution is exponential. This ex-
ponential distribution is found to be universal for quantum
chaotic systems with rigorous proof. In contrast, for the corre-
sponding classical system, the distribution is Gaussian. We find
that the quantum exponential distribution can smoothly change
to the classical Gaussian distribution with coarse graining. This
universal dynamical behavior can be observed experimentally
with Bose-Einstein condensates.
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1. Introduction

The experimental realization of ultra-cold atoms has pro-
vided fresh perspectives and new opportunities for many
traditional fields of physics [1–3], for example, Bloch os-
cillations [4, 5], BCS-BEC crossover [6, 7], and quantum
turbulence [8, 9]. In particular, it was pointed out recently
that it is now possible to study quantum chaos with Bose-
Einstein condensates [10]. In the past, intensive study of
quantum chaos has yielded many important results, elu-
cidating the intriguing correspondence between quantum
mechanics and classical mechanics [11–15]. They include
the Wigner distribution of energy level spacing [16], the
“scarring” of eigenstates along the classical periodic or-
bits [17,18], Schnirelman’s ergodic theorem on eigenstates
[19, 20]. However, all of these are the static properties of
a quantum chaotic system, concerning only its eigenval-

ues and eigenstates. In contrast, the quantum chaotic dy-
namics has received far less attention [21]. With the Bose-
Einstein condensate and the technique of CCD imaging,
we can now not only study experimentally the static prop-
erties of a quantum chaotic system [22] but also study its
dynamics [10].

Motivated by this new possibility, we investigate the
dynamics in a quantum chaotic system. By following a pi-
oneering work [21], we study the time evolution of a wave
packet inside a ripple quantum billiard [23].

We find numerically that the wave packet evolution
always leads to an “equilibrium” state, where the den-
sity probability is exponentially distributed. With rigorous
proof, we show that this exponential distribution is uni-
versal for all quantum chaotic systems. This exponential
law is in stark contrast with the evolution of a “cloud”
of classical particles in the same billiard, which always
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Figure 1 (online color at www.lphys.org) Dynamical evolution of a moving wave packet in a ripple billiard (a0) – (a4) and a square
billiard (b1) – (b4). (c) – the time evolution of the probability for the density being above the average. The red-dashed line is for 1/e
with e being the Euler’s number. (d) – the density probability distribution functions at t = 12Ts. The red solid line is for exp(−n0). The
inset shows the semilog plot of the same set of data. δn = 0.02 is used to obtain the results in (d)

leads to a Gaussian distribution. Furthermore, we demon-
strate that the quantum-classical transition between the ex-
ponential distribution and the Gaussian distribution can be
achieved with coarse graining. Now this exponential dis-
tribution has been observed experimentally with a BEC in
one-dimensional optical lattice [24].

2. Dynamical evolution in a quantum chaotic
billiard

We consider the following Schrödinger equation with the
units h̄ = 2m=1

i
∂Ψ

∂t
=

(
− ∂2

∂x2
− ∂2

∂y2
+ Vb

)
Ψ , (1)

where Vb represents the hard-wall potential for a ripple bil-
liard (see Fig. 1a0). The ripple billiards have the advantage
of having an exact Hamiltonian matrix in terms of elemen-
tary functions [23]. The left and right walls are described
by functions ∓[b − a cos(2πy/L)], respectively. The ini-
tial wave function is a moving Gaussian wave packet
Ψ(x, y, t = 0) = ΨG(x, y) exp(iv0x/2), where ΨG(x, y)
is the ground-state wave function in a harmonic trap
Vh = (ω2

xx2 + ω2
yy2)/4.

The time evolution of the wave packet density
n(x, y, t) = |Ψ(x, y, t)|2 is shown in Fig. 1a1 – Fig. 1a4
for the parameters ωx = ωy = 2, v0 = 10, L = 30, b = 15, and
a = 6. The time is in the unit of Ts = 2(a + b)/v0, which
is the longest time to make a round-trip along the x di-
rection inside the billiard. All the parameters are chosen
from relevant BEC experiments [1]. As clearly seen in the
figure, the wave packet moves and expands, and eventu-

www.lphys.org
c⃝ 2011 by Astro Ltd.

Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA



400 H.W. Xiong and B. Wu : Universal behavior in quantum chaotic dynamics

ally gets reflected multiple times by the curved hard walls.
As a result, the wave packet gets smeared out in the bil-
liard. After about t = 6Ts, the density of the wave packet
reaches an “equilibrium” state, where the overall feature
of the wave packet no longer changes. For comparison,
the evolution of the same wave packet in a square billiard
(a = 0) is shown in Fig. 1b1 – Fig. 1b4. The difference is
obvious: in the square billiard, the wave packet always has
certain patterns, looking very regular, and it never settles
into any fixed pattern.

To describe quantitatively the contrasting images be-
tween Fig. 1a3 – Fig. 1a4 and Fig. 1b3 – Fig. 1b4, we intro-
duce the density probability distribution function P (n, t),
which is the probability of the wave packet density being
between n − δn/2 and n + δn/2,

P (n, t) =
S (n − δn/2, t) − S (n + δn/2, t)

δn Stotal
, (2)

where Stotal is the area of the whole billiard and S(n, t)
is the area of the regions where the density is larger than
n. Since the wave packet in our calculation is normal-
ized to one, the averaged density is ns = 1/Stotal. With
the averaged density, we define a dimensionless den-
sity n0 = n/ns. The dimensionless probability distribution
function is then P0(n0, t0) = nsP (n, t) with t0 = t/Ts.

Fig. 1c shows the time evolution of
sa(t) = S(ns, t)/Stotal, the probability of having den-
sity above the average. For the square billiard (a = 0),
sa(t) exhibits large-amplitude oscillations, reflecting
the ever-changing regular patterns in the density. Very
differently and also strikingly, for the ripple billiard, sa

quickly reaches a plateau, fluctuating slightly around 1/e
(e≈ 2.718 is the Euler’s number). This signals that the
wave packet eventually evolves into an “equilibrium”
state, where the overall feature of the wave function no
longer changes. The distribution function P0(n0, t0) also
has similar behavior: for the square billiard, P0 always
changes with time; in contrast, for the ripple billiard,
P0 settles into an “equilibrium” function. As shown in
Fig. 1d, we find by numerical fitting that the “equilibrium”
function is in fact exponential,

P eq
0 (n0) = exp(−n0) . (3)

This simple exponential law is also found numerically for
the widely studied stadium billiard [17, 21]. The evolution
of a wave packet in Fig. 1 can also be regarded as an evolu-
tion of a BEC without interaction. After adding interaction
and solving the Gross-Pitaevskii equation, we find that the
density distribution of a BEC can also reach the exponen-
tial distribution after long-time evolution. These numeri-
cal calculations indicate that the exponential law in Eq. (3)
is likely universal and may apply in any quantum chaotic
systems and in many different settings.

In Fig. 2a, we have plotted the momentum distribu-
tion of the wave function shown in Fig. 1a4. The mo-
mentum distribution has a ring-shaped structure with a
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Figure 2 (online color at www.lphys.org) (a) – density distri-
bution in the momentum space for the quantum state shown in
Fig. 1a4. (b) – probability distribution for the momentum distri-
bution in (a). In obtaining (b), the momentum space is divided
into concentric rings with equal spacing δk = π/30 and each ring
is then divided into equal pieces so that each piece has the area
of ∼ δk×δk. The density at each unit piece is renormalized with
the averaged density of the ring where the unit piece belongs.
The large fluctuations in (b) are caused by the small number of
sample points

spotty look. To understand this structure, let us consider
the time evolution of a “cloud” of non-interacting iden-
tical classical particles, whose initial velocity distribu-
tions are identical to the wave packet in Fig. 1a0, that is,
G(v, t = 0)∼ exp(−|v−v0|2/2σ2

v). For a chaotic billiard
with hard-wall boundary (e.g., the ripple billiard), after
long-time evolution, the velocity distribution will become

c⃝ 2011 by Astro Ltd.
Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA www.lphys.org



Laser Phys. Lett. 8, No. 5 (2011) 401

G(v, t≫Ts)∼ exp[−(|v|2−v2
0)/2σ2

v ], which is exactly a
ring-shaped distribution with a maximum at v = v0. Since
the classical distribution G(v, t≫Ts) is very smooth, the
spotty look in Fig. 2a has a quantum origin. As we have
done for the density in the real space, we use similar statis-
tics to quantify the spotty or random image in Fig. 2a. We
first divide the whole momentum space into a series of
rings with equal small spacing and then cut each ring into
small pieces of the same area. In this way, we obtain a set
of momentum densities. This set of densities does not fol-
low the exponential law. However, after renormalizing the
densities of each ring with its averaged density, we again
find an exponential distribution as shown in Fig. 2b.

Moreover, following [21], we construct a semiclassical
wave function with the momentum distribution G

Ψ(x, y, t ≫ Ts) ∝
∫

dvxdvyG(v, t ≫ Ts)× (4)

× exp
{
−i

[
vxx/2 + vyy/2 + ϕr(vx, vy, t)

]}
,

where ϕr(vx, vy, t) is the random phase caused by the
classical chaos. The density of this wave function is shown
in Fig. 3a. Although it appears different in structure from
Fig. 1a4, the random wave function Ψ in Eq. (4) also obeys
the exponential law (black solid line in Fig. 3b). Due to the
large sampling size in this case, the numerical result fits the
exponential function exp(−n0) almost perfectly.

All the above results point to the universality of the
exponential distribution. This will become apparent as we
give a rigorous proof in the following. We divide the region
of the dynamical evolution into N equal parts. Then the
quantum state |Ψ(t)⟩ can be approximated as

∣∣Ψ(t)
〉
≈

N∑

j=1

αj(t)|xj , yj⟩ . (5)

Here

αj(t) =

∫

Ξj

Ψ(x, y, t)dxdy

√
Stotal/N

with Ξj denoting the jth part. Obviously, αj’s are complex
numbers, satisfying the normalization condition

N∑

j=1

|αj |2 = 1 . (6)

We assume that for a fully chaotic classical system, its cor-
responding quantum dynamics will always drive the sys-
tem to states, where the αj’s are a set of random complex
numbers that satisfy the above normalization condition.
With these considerations, the probability of |αj |2 being
between γj and γj + dγj is

P (γj)dγj = (7)
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Figure 3 (online color at www.lphys.org) (a) – density of the
randomly superposed plane waves. It is computed according to
Eq. (4) with 10,000 plane waves for an area of 400×400. (b) –
density probability distributions for the random quantum state in
(a). The distribution functions are obtained by dividing this whole
area equally into different square cells, 0.1×0.1 (black line), 2×2
(green line), and 8×8 (red line)

=

∫
d2α1 . . . d2αN δ

(
γj − |αj |2

)
δ

(
1−

N∑
i=1

|αi|2
)

∫
d2α1 . . . d2αN δ

(
1−

N∑
i=1

|αi|2
) dγj .

It is easy to find that

1∫

0

P (γj)dγj = 1 .

After straightforward calculations [25, 26], we have

P (γj) = (N − 1)(1 − γj)N−2 . (8)
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Figure 4 (online color at www.lphys.org) The 959th eigenstate
of the ripple billiard and its density probability distribution. The
parameters for the ripple billiard are the same as in Fig. 1. The
inset in (b) is the semilog plot of the same data

In the limit of N →∞, we have

αj(t) ≈
Ψ(xj , yj , t)√

nsN

and the density probability distribution for the jth part
becomes P (nj) = exp(−nj), where nj = |Ψ(xj , yj)|2/ns.
Because different part satisfies the same exponential prob-
ability distribution, the dimensionless density probability
distribution P0(n0) defined for the whole region satisfies
the exponential probability distribution exp(−n0).

The above rigorous proof indicates that this exponen-
tial law is universal and should appear in any quantum
chaotic systems and many different settings in the momen-
tum space. We notice that this exponential law is known to
exist in the speckle pattern of light [27]. However, it seems
that this exponential law has been limited to this special
system, and has never been fully discussed in the context
of quantum chaos or explored for broad applications.

In fact, the density probability distribution of an eigen-
state was studied in literature in terms of amplitude prob-
ability distribution; however, no similar universal behav-
ior was found [28]. We have checked the eigenstates of
the ripple billiards numerically and found that this is in-
deed the case. One example is shown in Fig. 4, where the
density probability distribution is compared to both the
exponential distribution and the Porter-Thomas distribu-
tion [29]. It is clear that it does not fit both of the distribu-
tions although it fits better with the Porter-Thomas distri-
bution.

3. Quantum-classical correspondence

The established exponential law is in fact a quantum phe-
nomenon. We can imagine to throw randomly many, many
classical particles into the billiard. By the central limit
theorem, the resulted density probability distribution is a
Gaussian with its peak located at the averaged density,
drastically different from the exponential distribution for
a quantum gas. To confirm this, we have simulated the
evolution of a cloud of non-interacting classical particles
with the same spatial and velocity distributions as the wave
packet studied in Fig. 1. The results are shown in Fig. 5,
where we see the classical cloud expands and reflects very
much like its quantum wave packet in Fig. 1. However, the
density probability distribution function for the classical
cloud after long time evolution is Gaussian (see Fig. 5b)
as we just argued. This shows that the exponential distri-
bution is a quantum effect and can be used in experiment
to tell whether a highly-excited gas is quantum or classical
(thermal).

The central question in the study of quantum chaos
is how the classicality observed in our daily life emerges
from the underlying quantum world [30]. Therefore, it is
very interesting to see how the classical Gaussian distri-
bution emerges from the quantum exponential distribu-
tion. We find that the quantum-classical correspondence
in this regard is built by coarse graining. We have com-
puted the density of the random wave in Eq. (4) for an area
of 400×400. To obtain the density probability distribution
P0, we then divide the whole area equally into small square
cells and sample the averaged densities in these small cells.
We find that the distribution function changes its shape
with the size of the cell: as the cell size increases, the dis-
tribution changes from exponential to Gaussian as shown
in Fig. 3b. The same transition is observed for the density
in Fig. 1a4 with coarse graining although the fluctuations
are large due to the small sampling size. Besides its fun-
damental significance, this coarse graining result has also
implications in practice: with a camera of low resolution,
one is likely to observe a Gaussian distribution even for a
quantum gas.
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Figure 5 (online color at www.lphys.org) Evolution of a cloud of classical particles. (a0) – (a4) are plotted with 20,000 particles while
the statistics shown in (b) is done with 1 million particles. The cloud initially has the exact same spatial and velocity distribution as the
initial wave packet in Fig. 1. The unit cell used for obtaining the statistics in (b) is 0.6×0.6

4. Discussion

We have been calling the quantum state reached after long-
time evolution “equilibrium” state. This is because we
can not resist the temptation to compare it with the equi-
librium state in thermodynamics. In thermodynamics, a
system will always evolve into an equilibrium state after
fully relaxed. After the equilibrium is reached, the state
still changes microscopically; however, the statistical dis-
tribution function no longer changes. It is similar here:
after a certain long time (∼ 6Ts in our case), the quan-
tum state still changes locally while its overall structure
remains the same and the density probability distribution
function sticks to the exponential law. This reaching of
an “equilibrium state” should also be closely related to
or provide a fresh perspective to the quantum ergodicity,
which has been discussed extensively in terms of eigen-
functions [19, 20].

It is worthwhile to compare the hyper-sphere in the
Hilbert space defined by the normalization condition (6) to
the hyper-sphere in the phase space defined by a constant
energy. As we know, for almost all the microscopic states
in the phase space sphere, they share the same macroscopic
characteristics, such as the same pressure and the same
thermal expansion coefficient. Similarly, with the under-
standing that we have gained so far, almost all the states in
the Hilbert space should have the exponential distribution.
It is true that there are many states such as the eigenstate
shown in Fig. 4, which do not have the exponential distri-
bution. However, we expect the measure of these states is

zero. In fact, the rigorous proof and the numerical simu-
lation provided above seem to indicate that the dynamical
evolution in the hyper-sphere in the Hilbert space is er-
godic. In light of this discussion, it is likely that this expo-
nential distribution is related to the thermalization of iso-
lated quantum systems [31–33].

Quantum chaotic system has been defined as the
quantum system whose corresponding classical system is
chaotic. There have always been efforts to define quantum
chaos without referring to classical dynamics [20]. With
the exponential distribution law, we may be now ready to
do this. One might choose to define a quantum chaotic sys-
tem as a quantum system which has the ability to drive an
initially regular wave packet to a coherent superposition
of completely random wave functions, which has the ex-
ponential density probability distribution. We finally note
that for the exponential distribution, the density fluctuation
is δn2 = n2, which is much larger than the Gaussian dis-
tribution. In other words, the quantum fluctuation in den-
sity is much larger than the classical fluctuation. This large
quantum fluctuation in density may help to explain the for-
mation of stars if a wave function for the whole universe is
assumed [34, 35].

Besides its theoretical significance, our result has po-
tential applications in the field of ultracold atoms, where
the study of non-equilibrium ultracold atoms is a hot topic
[8, 9, 33, 36, 37]. A cloud of atoms can be prepared in
their lowest energy state and then be transferred to a non-
equilibrium state by some external fields (chaotic billiard
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is one example) [38]. The action of these external fields
may or may not destroy the quantum nature of the atomic
gas. The question is then: how one can distinguish experi-
mentally whether the gas is a quantum gas or classical gas.
The most straightforward way is to measure the distribu-
tion of density in the cloud. Our result shows that for a
chaotic system, the density distribution of a quantum gas
is drastically different from that of a classical gas. The for-
mer is exponential while the latter is Gaussian.

The exponential density distribution of a quantum gas
was just observed experimentally with a BEC in one di-
mensional lattice and used to reveal quantum criticality
[24].
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