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Matter wave interference of dilute Bose gases in the critical regime∗
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Ultra-cold atomic gases provide a new chance to study the universal critical behavior of phase transition. We study
theoretically the matter wave interference for ultra-cold Bose gases in the critical regime. We demonstrate that the inter-
ference in the momentum distribution can be used to extract the correlation in the Bose gas. A simple relation between the
interference visibility and the correlation length is found and used to interpret the pioneering experiment about the critical
behavior of dilute Bose gases [Science 315 1556 (2007)]. Our theory paves the way to experimentally study various types
of ultra-cold atomic gases with the means of matter wave interference.
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1. Introduction
Matter wave interference is an important branch of ultra-

cold atomic gases.[1] On the one hand, it demonstrates di-
rectly the coherence property of the system. For example,
the spatial coherence property of Bose–Einstein condensates
(BECs) in dilute gases was firstly shown experimentally with
the observation of clear interference fringes for two overlap-
ping condensates by Ketterle’s group.[2] On the other hand, it
provides an important means to reveal the many-body physics
of ultra-cold atomic gases.[3] For example, it is also used to
reveal the quantum phase transition from a superfluid to a
Mott insulator,[4] low-dimensional quantum fluctuations,[5–9]

quantum correlations[10] and quantum depletion.[11] Even for
the Ketterle’s experiment,[2] its interpretation involves novel
many-body physics.[12–19]

In the last few years, the critical phenomena for ultra-
cold atomic gases have been given intensive studies both
experimentally[4,20–23] and theoretically.[24–33] In 2007, the
matter wave interference was used to reveal the universal criti-
cal behavior of ultra-cold Bose gases in the critical regime.[34]

Near a second-order phase transition point, the fluctuations of
the order parameter dominate the behavior of the system over
all length scales and get strongly correlated. This strongly cor-
related many-body state shows surprisingly simple and uni-
versal critical relations.[35–37] The theory of critical phenom-
ena predicts the divergent behavior of the correlation length
in the critical regime. It is understandable that in the critical
regime, there would be clear interference fringes if two ultra-
cold atomic clouds are allowed to overlap. With this idea of

matter wave interference, Donner et al.[34] gave the first exper-
imental demonstration of the divergent and universal behavior
of the correlation length for ultra-cold Bose gases in the crit-
ical regime. Recently, the Talbot–Lau interferometry[38] was
used to further reveal the critical regime of the ultra-cold Bose
gases.

However, the relation between the measured visibility and
the correlation function in the off-diagonal long-range order
is still an open question. A proportional relation was used
in Ref. [34] without proof to extract the correlation length,
which plays a key role to demonstrate the divergent and uni-
versal behavior of the correlation length in the critical regime.
It is the purpose of this work to study theoretically the rela-
tion between the interference visibility of two released atomic
clouds from the ultra-cold Bose gas and the correlation func-
tion showing the spatial correlation for atoms at different lo-
cations. The present work has potential applications for other
ultra-cold atomic gases if the interference is adopted to extract
the correlation.

The manuscript is organized as follows. In Section 2, we
give a brief introduction to the one-body density matrix and
the correlation function, and their relation with the momentum
distribution. We generally discuss the momentum distribution
of two subsystems in Section 3, finding the relation between
the visibility and the correlation function. The result is applied
to the interference experiments done by Esslinger in Section 4.
We verify our simple model numerically in Section 5 and con-
clude in Section 6.
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2. Momentum distribution of dilute Bose gases
in the critical regime

Let us consider the one-body density matrix of a bosonic
system

n(1)(𝑟1,𝑟2) =
〈
Ψ̂

†(𝑟1)Ψ̂(𝑟2)
〉

= g(1)(𝑟1,𝑟2)
√

n(𝑟1)
√

n(𝑟2), (1)

where Ψ̂ †(𝑟) (Ψ̂(𝑟)) is the field operator creating (annihilat-
ing) a particle at point 𝑟, obeying the bosonic commutation
relation [Ψ̂ (𝑟) ,Ψ̂ † (𝑟′)] = δ (𝑟− 𝑟′). 〈·〉 considered in this
work means statistical ensemble average with the quantum av-
erage for a pure state as a special case. The density distribu-
tion is then n(𝑟) = n(1)(𝑟,𝑟). g(1)(𝑟1,𝑟2) is a dimensionless
correlation function which reflects the long-range correlation
for atoms at different locations. There have been intensive
theoretical studies on the expression of g(1)(𝑟1,𝑟2) for a lot
of systems.[35–37] For three-dimensional uniform dilute Bose
gases in the critical regime, g(1)(𝑟1,𝑟2) takes the following
well-known expression:[35–37]

g(1)(𝑟1,𝑟2) ∝
exp(−|𝑟1−𝑟2|/ξ )

|𝑟1−𝑟2|
, (2)

where the correlation length ξ ∝ |(T −Tc)/Tc|−ν with ν being
the critical exponent.

In the experiments of ultra-cold atomic gases, one usually
measures the momentum distribution n(𝑝) = 〈Ψ̂ †(𝑝)Ψ̂(𝑝)〉.
Interestingly, the momentum distribution n(𝑝) is related di-
rectly to the one-body density matrix n(1)(𝑟1,𝑟2). Therefore,
the momentum distribution n(𝑝) is also related to the correla-
tion function

n(𝑝) =
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
n(𝑟1)

√
n(𝑟2)

×g(1)(𝑟1,𝑟2)e i(𝑟1−𝑟2)·𝑝/h̄. (3)

This means that the measurement of n(𝑝) in atomic gas exper-
iments reveals the spatial correlation g(1)(𝑟1,𝑟2). We will use
this general relation to consider the matter wave interference
in the critical regime of an ultra-cold Bose gas in the following
sections.

3. Momentum distribution of two subsystems

For an ultra-cold Bose gas in the critical regime, we con-
sider the momentum distribution of two spatially separated
atomic clouds in the interior of a Bose gas, illustrated in Fig. 1.
The distance between these two atomic clouds is d. This is to
model the experiment in Ref. [34], where two atomic beams
were outputted to extract the interference and correlation in-
formation.

d

nA nB

Fig. 1. (color online) Schematic representation of two atomic clouds in
an ultra-cold Bose gas in the critical regime. We consider two spatially
separated atomic clouds with densities nA and nB separated by 𝑑 in the
interior of a Bose gas.

We consider the case that there is no overlapping between
these two atomic clouds. In this case, the overall density dis-
tribution n(𝑟) can be written as the sum of the density distri-
butions of the two atomic clouds

n(𝑟) = nA(𝑟)+nB(𝑟). (4)

As there is no overlapping between these two atomic clouds,
we also have √

n(𝑟)≈
√

nA(𝑟)+
√

nB(𝑟). (5)

According to Eq. (3), the overall momentum distribution of
these two atomic clouds is

n(𝑝) = nAA(𝑝)+nBB(𝑝)+nAB(𝑝)+nBA(𝑝), (6)

where

nAA(𝑝) =
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
nA(𝑟1)nA(𝑟2)

×g(1)(𝑟1,𝑟2)exp[i(𝑟1−𝑟2) ·𝑝/h̄],

nBB(𝑝) =
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
nB(𝑟1)nB(𝑟2)

×g(1)(𝑟1,𝑟2)exp[i(𝑟1−𝑟2) ·𝑝/h̄],

nAB(𝑝) =
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
nA(𝑟1)nB(𝑟2)

×g(1)(𝑟1,𝑟2)exp[i(𝑟1−𝑟2) ·𝑝/h̄],

nBA(𝑝) =
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
nB(𝑟1)nA(𝑟2)

×g(1)(𝑟1,𝑟2)exp[i(𝑟1−𝑟2) ·𝑝/h̄]. (7)

Here nAB(𝑝) and nBA(𝑝) represent the interference between
the two atomic clouds.

Near the critical regime, the correlation length ξ is large.
It is reasonable to assume that the spatial size of each atomic
cloud is much smaller than the correlation length ξ . This as-
sumption will lead to the following two approximations. (i)
As the integration

∫
d𝑟1d𝑟2 in nAA(𝑝) (or nBB(𝑝)) is over the

interior of atomic cloud A (or B), g(1)(𝑟1,𝑟2) in the integral of
nAA(𝑝) (or nBB(𝑝)) can be approximated as 1. Hence, nAA(𝑝)

and nBB(𝑝) are the momentum distribution of each atomic
cloud. (ii) In the interference terms nAB(𝑝) and nBA(𝑝), the
integrations

∫
d𝑟1 and

∫
d𝑟2 are over the interior of different

atomic clouds. With this assumption, g(1)(𝑟1,𝑟2) can be ap-
proximated as a constant g(1)(d) with d = |𝑑| the distance be-
tween the two atomic clouds.
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Using the above two approximations, we have

nAA(𝑝) ≈
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
nA(𝑟1)nA(𝑟2)

× exp[i(𝑟1−𝑟2) ·𝑝/h̄],

nBB(𝑝) ≈
1

(2π h̄)3

∫
d𝑟1d𝑟2

√
nB(𝑟1)nB(𝑟2)

× exp[i(𝑟1−𝑟2) ·𝑝/h̄],

nAB(𝑝) ≈
g(1)(d)
(2π h̄)3

∫
d𝑟1d𝑟2

√
nA(𝑟1)nB(𝑟2)

× exp[i(𝑟1−𝑟2) ·𝑝/h̄],

nBA(𝑝) ≈
g(1)(d)
(2π h̄)3

∫
d𝑟1d𝑟2

√
nB(𝑟1)nA(𝑟2)

× exp[i(𝑟1−𝑟2) ·𝑝/h̄]. (8)

We see that the interference terms nAB(𝑝) and nBA(𝑝) are pro-
portional to the correlation function g(1)(d).

We consider a special situation that the two atomic clouds
are identical so that nA(𝑟) = nB(𝑟+𝑑). In this case, we have

n(𝑝)≈ 2nAA(𝑝)
[
1+g(1)(d)cos(𝑝 ·𝑑/h̄)

]
. (9)

It is clear that the overall momentum distribution n(𝑝) has a
term that indicates how the interference visibility depends on
the dimensionless correlation function g(1)(d). By varying the
distance between the two atomic clouds, from the measure-
ment of the density distribution n(𝑝), one can obtain g(1)(d).

4. Application to the interference experiment of
two outputted atomic beams
The interference is one of the most powerful means to

extract the correlation or coherence property in the one-body
density matrix. In Ref. [34], the interference between two re-
leased atomic beams was measured to extract the spatial cor-
relation function g(1)(𝑟1,𝑟2), as illustrated in Fig. 2. In this
experiment, two atomic beams were outputted from the ultra-
cold atomic gas in the critical region. The released atoms
propagated downward because of gravity. Besides the down-
ward propagation, these two atomic clouds expanded and fi-
nally overlapped with each other. The interference effect was
then detected from the measured density distribution of these
two overlapping atomic clouds. At temperatures near the crit-
ical temperature, a series of visibilities V (d) of the interfer-
ence fringes were measured by varying the initial distance d
between the two outputted atomic clouds.

In Ref. [34], the correlation length ξ was obtained by fit-
ting the measured visibilities with Aexp(−d/ξ )/d. By vary-
ing the temperature, the relation between ξ and the tempera-
ture was obtained, revealing the critical exponent. However,
in Ref. [34], the proportional relation between the visibility
V (d) and Aexp(−d/ξ )/d was used as an assumption without
proof. We now consider this problem with the general theory
developed in the previous sections.

two released

ultra cold Bose gas

atomic beams

optical cavity detector

z

y

x

d

h

Fig. 2. (color online) Schematic representation of the interference of
two released atomic beams observed by an optical cavity detector. Two
clouds of atoms (green spots) with spacial separation d are coupled out
from an ultra-cold gas in the critical regime. Their interference pattern
in time is detected with an optical cavity detector. The vertical distance
between the center of the two clouds and the cavity axial line is h.

For two outputted atomic clouds in the critical region, the
density distribution of these two atomic clouds is given by
Eq. (4). We consider the case that the distance between these
two atomic clouds is sufficiently large so that the overlapping
between nA(𝑟) and nB(𝑟) just before the output coupling can
be omitted. This should not be confused with the final over-
lapping after the followed downward propagation and free ex-
pansion.

We consider the simplest case where the two outputted
atomic clouds are identical so that nA(x,y,z) = nB(x,y,z−d).
We further assume that

nA,B(𝑟) = nA,B(z)n0
⊥(x,y), (10)

where n0
⊥(x,y) is the density profile of the two clouds in the

perpendicular direction, which can be assumed to be Gaussian,
and satisfies

∫
n0
⊥(x,y)dxdy = 1. From Eq. (9), the momentum

distribution along the z direction is then

n(pz) ≈
∫

n(𝑝)dpxdpy

= 2nz(pz)

[
1+g(1)(d)cos

(
pzd
h̄

)]
, (11)

where nz(pz) = |
∫

dz
√

nA(z)exp(i pzzh̄)|2/2π h̄. The interfer-
ence term in the momentum distribution is clearly given by the
term g(1)(d)cos(pzd/h̄).

As illustrated in Fig. 2, in the experiment of Ref. [34], two
released atomic clouds propagate downward because of grav-
ity. Because the two released atomic clouds locate at the center
of the harmonic trap, we can use the uniform gas approxima-
tion to analyze the critical correlation. Assume that the dis-
tance between the ultra-cold Bose gas and the high-finesses
optical cavity detecting the flux of the released atomic clouds
is h. The velocity of the atomic clouds relative to the optical
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cavity is v0 =
√

2gh with g being the gravitational accelera-
tion. The free-fall time is t0

√
2h/g. The measured atomic

density distribution can be mapped to the momentum distri-
bution with z(t)≡ pzt/m for long-time free expansion. In this
case, when the atomic clouds arrive at the optical cavity at time
t0, in the center-of-mass coordinate of the two atomic clouds,
we have the spatial density distribution

n(z, t0) = 2nz

(
pz ≡

zm
t0

)[
1+g(1)(d)cos

(
mdz
h̄t0

)]
. (12)

In Ref. [34], they measured the flux with the high-finesse
optical cavity detector. In addition, two outputted atomic
beams were continuous. When the energy difference ∆E [39]

per atom between the two outputted atomic beams besides the
gravitational potential is considered, in the laboratory frame of
reference, the flux detected by the optical cavity becomes

F(t) = F0

[
1+g(1)(d)cos

(
mgd

h̄
t +

∆E
h̄

t +φ

)]
. (13)

Here F0 is a constant for continuous and uniform output of the
atomic beams and φ is a fixed phase difference.[39]

From the above equation, we finally obtain the following
proportional relation between the interference visibility V and
g(1)(d),

V = g(1)(d). (14)

This proportional relation does not depend on the energy dif-
ference and phase difference between the two atomic beams.
The period of the flux is

T =
2π h̄

mgd +∆E
. (15)

It is worthwhile pointing out that, in the above deriva-
tion, there are two implicit assumptions. (i) In the output and
the following downward propagation of the atomic beams, the
momentum distribution of the atomic beams in the center-of-
mass coordinate does not change. (ii) During the output of the
atomic beams from the ultra-cold atomic gas, the collisions to
re-establish thermal equilibrium of the whole system can be
omitted. When the matter wave interference is used to reveal
the spatial correlation of the system in the critical regime, the
experiment should be designed to satisfy these two assump-
tions.

5. Numerical simulation
In order to verify our simple while intuitive model,

we solve Eq. (3) numerically with the experimental param-
eters described in Ref. [34]. Specifically, we start with
the initial density (4) with Gaussian distributions nA,B(𝑟) =

1√
π∆ 2 e−(𝑟±𝑑/2)2/∆ 2

separated by distance d = |𝑑|. Assuming
the width ∆ of the Gaussian distributions to be much smaller
than their separation ∆ � d, we have√

n(𝑟) ' 1
4√

π∆ 2

{
exp
[
− (𝑟+𝑑/2)2

2∆ 2

]

+ exp
[
− (𝑟−𝑑/2)2

2∆ 2

]}
. (16)

Substituting it into Eq. (3), we can obtain its momentum dis-
tribution

n(𝑝) =
1

(2π h̄)3

∫
d𝑠nT(𝑠)g(1)(s)e i𝑠·𝑝/h̄, (17)

with

nT(𝑠) = 2exp
(
− s2

4∆ 2

)
+ exp

[
− (𝑠+𝑑)2

4∆ 2

]
+ exp

[
− (𝑠−𝑑)2

4∆ 2

]
. (18)

Here s = |𝑠|= |𝑟1−𝑟2|. In the derivation of Eq. (17), we have
carried out the integration over 𝑅 = (𝑟1 + 𝑟2)/2. As can be
seen, the momentum distribution is composed of three terms,
each one being the Fourier transform of a Gaussian func-
tion centered at 0,±d multiplied by the correlation function
g(1)(s), respectively. In reminiscence of Eq. (6), one knows
that the first term on the right hand side of the above equation
is the momentum distribution of each cloud, while the second
and the third terms originate from the interference between the
two clouds in momentum space.

As illustrated in Fig. 2, we assume that the centers of
the two clouds are both in the z axis. Given the distribution
width ∆ , the distance d between them, the temperature T of
the atomic gas, and the correlation length ξ , we finish the in-
tegration in Eq. (17) numerically and obtain the momentum
distribution, from which we obtain the visibility of the inter-
ference pattern centered at pz = 0.

It is worth pointing out that, in calculating the integration,
we have encountered problems at small s since the correla-
tion function (2) can be used only when |𝑟1−𝑟2| � λT . Here

λT =
√

2π h̄2/(mkBT ) is the thermal de Broglie wavelength
of the atomic gas at temperature T with the Boltzmann con-
stant kB and the atomic mass m. We overcome this problem
by using the following form of the correlation function in the
critical regime when ξ > λT :

g(1)(s) =

{
exp
(
−πs2/λ 2

T
)
, if s≤ sc,

s0/r exp(−s/ξ ) , if s > sc,
(19)

with

sc = λT

(
η +

√
η2 +8π

)
/4π,

s0 = sc exp
(
sc/ξ −πs2

c/λ
2
T
)

being two parameters determined by η = λT/ξ , the ratio of the
de Broglie wavelength λT and the correlation length ξ . sc and
s0 are obtained by solving the continuity equation of g(1)(s)
and its first order derivative. In this form, g(1)(s) maintains
a smooth function up to its first order derivative on the whole
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s-axis, besides the correct condition g(1)(0) = 1. Beside, when
the temperature is far above the critical temperature, λT � ξ ,
and sc → ∞, the correlation function is then totally dominant
by the Gaussian part. In the critical regime, ξ & λT , sc is then
on the order of several times of λT . The long-range e−s/ξ/s
tail then becomes important.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2
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0.4
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(a) (b)

54321
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V

V
↼d
↽

Fig. 3. (color online) (a) Dependence of the visibility V on the distance
d between the two atomic clouds for different correlation length ξ . (b)
Relation of the visibility V (d) with the correlation function g(1)(d) at
different ξ . Here the symbols are numerical integration results and the
dashed lines are given as guides for the eye.

With the above form of the correlation function, we can
perform the integration of 𝑠 over all space including 𝑠= 0. In
the previous analytical approximation in Section 3, however,
we assume that the interior of the cloud is fully coherent. In
Fig. 3(a), we show the dependence of the visibility on the dis-
tance d for different correlation length ξ when ∆ � d is well
satisfied. When ξ ≤ λT , the visibility drops quickly as the
distance d between the two clouds is increased. Besides, the
visibility does not change with ξ , since in this case the correla-
tion function g(1)(s) = exp(−πs2/λ 2

T ) is unrelated to ξ . When
ξ > λT , a typical e−r/ξ/r behavior of the dependence of V on
d is obtained. We fit the dependence with the correlation func-
tion ξ being the fitting parameter as in the experiment, and
find good consistency with our input value of ξ . We also com-
pare the visibility with the correlation function g(1)(d). For
different ξ , the visibility V (d) is a linear function of g(1)(d).
Furthermore, as can be clearly seen from Fig. 3(b), the depen-
dence of V (d) on g(1)(d) at different ξ coincides and becomes
a single line. With this result, we verify that under the condi-
tions of ∆� d and ∆� ξ , the visibility is indeed proportional
to the correlation at the distance of the two clouds.

6. Summary and discussion
In summary, we have studied the momentum distribution

of the ultra-cold Bose gas in the critical regime. We find that
the momentum distribution is directly related to the correla-
tion function of the system and its interference can be used
to extract the correlation length. We have used this theory to

explain the experiment in Ref. [34]. It is clear that the theory
developed here can also be applied to consider the phase tran-
sition of other systems, such as the phase transition for ultra-
cold Bose gases with optical lattices, low-dimensional phase
transition, ultra-cold fermionic and molecular gases.
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