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Abstract. We discuss the Poisson-Lie structure of the integrable nonlinear O{¥') ¢-madel
with the moving-frame method. The corresponding r- and s-matrices are given explicitly.
We also perform the gauge transformation for the Lax potential and the r and s matrices,
Furthermore, we discover that the fisld-dependent terms in our r- and s-matrices only
depend on the Riemannian connection of the target manifold.

1. Introduction

Great progress has been made in understanding the algebraic structures of two-dimen-
sional nonlinear integrabie models with the Hamiltorian approach. The starting point
of the discussion is to study the Poisson bracket between Lax potentials. For a lot of
integrable models, such as the wznw models and Toda systems. this bracket leads to
a Lie-Poisson algebra as [5]

{L(x, D@Ly, u)}=I[r(A, u), L(x, )@ + 1@ L(x, 1)18(x—y). (1)

with an antisymmetric r-matrix acting as its structural constant. This matrix, known
as the classical r-matrix, satisfies the famous classical Yang-Baxter equation

["12(’1- P), 7'13(1, V)] + [-“12(& su)a FZZ(HS V)]+ [rll(’la V), ?’23(!1, V):!:O (2)

so that the Poisson structure of the dynamical systems is consistent. The importance
of structure (1) lies in the central role it plays in the context of integrable systems [5].
The models fitiing equation (1) are called ultralocal because the rus of equation (1)
contains only the delta function §(x—y) but not its derivatives. An important gen-
eralization of the above Lie-Poisson structure to certain non-ultralocal models has been
developed by Maillet [1]. In his new integrable canonical structure, equation (1) is
replaced by

{L(x, Y@Ly, 1)} =~ lr(x, &, p), L(x, 1)@ 1 + 1@ L(x, u)]6(x — )

+sCx, A, 4). L(x, )@ 1 - 1&L(x, p)]6(x—y)
= (r(x, A ) F5(x, A ) —#(p, A, 1) +5(y, Ay 21))6 (x—y). (3)
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Besides the usual antisymmetric r-matrix, another symmetric s structural matrix is
introduced in the new structure, and they both generally depend on the fields of the
theory. This algebraic structure is the extension of the usual Lie-Poisson algebra for
non-ultralocal integrable systems such as the nonlinear integrable o-models and princi-
pal chiral models, and plays a prominent role in them.

Integrable nonlinear ¢-models have clear geometric structures: their target mani-
folds are Riemannian symmetric spaces. Recently, Forger et af obtained a pair of field-
dependent r- and s-matrices of the o-models defined on Riemannian symmetric spaces
[2]. However, due to the special geometric structure of the models, we still expect that
r- and s-matrices have some geometrical meaning. Since geometric structure might be
seen more clearly under transformations, we study the O(N) o-model with a different
method—the so-called moving frame method. This method allows us to take gauge
transformations for Lax matrices and »- and s-matrices conveniently. By using this
method, we get a different form of the »- and s-matrices whose field-dependent terms
are, as we expect, just the Riemannian connections on an (N — 1)-dimensional sphere
SV, the target manifold of the O(N) o-model. Furthermore, we find that the new
form of r- and s-matrices can be changed into the form obtained by Forger er af after
a special gauge transformation. Here we note that the discussion can be generalized to
any Riemannian symmetric space. A paper is being prepared on this.

This paper is arranged as follows. In section 2, we review some important aspects
of the O(N} o-model and give a new form of Lax pairs in moving frames. Ina section
3, we work out the pew form of - and s-matrices under the simplest gauge. On the
basis of the results obtained in section 2, we get the r- and s-matrices under any gauge
in section 4. These results show that the field-dependent terms of the r- and s-matrices
are Riemannian connections.

2. O(N) o-model

A two-dimensional nonlinear ¢-model is a field theory in two-dimensionai Minkovski
space. Its Lagrangian is

L=1g, du' v 4

where u”s are the local coordinates of the target manifold of the model and {g'} is its
Riemannian metric matrix. For the O(N) o-model, its target manifold $¥ ~' ~SO(N)/
SO(N—1}) is a Riemannian symmetric space, so there exists an involution operator
n(n"_’= 1, but ##1). By using it, the Lie algebra % of SO(N) can be decomposed as

G=F+A (5)
[#, X"]=0 [, A )e=nA"+H n=0

so that #° and i satisfy the following relations:
[, #]cs# [5F, X e [, X 1=of.

Usually, the o-field on the symmetric space is expressed as

N(x)=g(x)ng™'(x)
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where g{x) 1s the group element of SO(N). Obviously,

N(xy=1. (6)
Then the Lagrangian has the following form:

£(x) =15 Tr(,N(x) 2*N(x)). (7)
Varying 2#(x) under the constraint condition {6), we obtain the motion equation

8, K4(x)=0 (%)
where

K%)=~ sN(x) 8.N(x). )

The conserved Noether currents are
Julx}==K(x).

According to (5), the left-invariant Maurer-Cartan form a,{x) alsc has a
decomposition:

2,(x) =g (%) 8,8(x) =hu(x) +ku(x) (10)
where

fi(x)= %[aJu JHeneF

ku(x) = 3[a,, nln=g" () K. (x)glx)eX. an
From (7)., (9) and (11), we get

£ ==}k, (), () (12)

where ( , ) is the G-invariant inner product on the coset space, induced from the Killing-
Cartan form of the Lie algebra %. Correspondingly, the motion equation (8) can be
expressed as

Dk =3,k" + [k, k=0, (13)

On the other hand, the pure gauge potential a,(x) satisfes the Maurer-Cartan
equations:

by =0k, +hy, b )+ 1k, k,]=0 (14)
Dk, — Dk, =0. (15)
Let
*ky= gy k” (&0 =&10=1)
then {15) becomes
DK (x)=0. - (16)

Comparing with (13), we see that the theory admits a continual dual transformation,
The result allows us to introduce a real linear combination of 4*(x} and *&*(x)

kou(x, A)=ch ¢k, (x) + sh ¢k, (x)
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where
ch¢=iif: sh¢=-i—22—i—1.
Then h,{x) and k,(x, A) satisfy the same equations as /,(x) and k,(x):
Buhy = Buhy Ay, b1+ 1Ky, K0 1=0 (17)
D k¥ (x, 1) =0. (18)
It means that f, (x) +Eﬁ,(x, A) can also be expressed as a pure gauge, namely,
3,®(x, 1) =D(x, A, (x) +Ku(x, 1)) (19)
O(x, 0)=g""(x).

We take these as the Lax pair equations in moving frames. The spatial part of Lax
matrices is

L(x, A) = hy(x) + ch ¢k, (x) +sh dlo(x). (20)

Usually, one constructs another auxiliary linear equation
2
9. U(x, A)=Ulx, A)m(jp-i-lawj") 20

whose spatial part of Lax matrices is

2
1-27

L(x,A)= (1(x) + Afo(x)). (22)

According to Maillet [1], the Poisson bracket between the Lax poiential should be

{Lx, MSL(y, u)} =—1r(x, &, 1), L{x, A)® 1+ 1QL(x, #)16(x~»)

+[s(x, &, p), L{x, 1)@ 1~ 1@L(x, n)]6(x =)
=(r(x, A, @} +s(x, A, p) = (3, A, p) +5(p, 4, p))3 (x—y). (3)
Using (22), Forger et af have given r- and s-matrices as [2]

2Ap oo 21+ A)(i-p)
(1=Ap)(A—p) ~ (1=A)(I=2A%)(1-p)
2A+p)
(1=2%)(1 -y’

where C is the Casimir tensor and j(x) is a scalar field.

In the next section we will calculate the r- and s-matrices for the O(N) s-model by
using the local moving-frame method, namely, we will take equation (20) rather than
(22) as our starting point. The reason is that we can gauge transform (20} conveniently
and see how the - and s-matrices change under gauge transformation. Thus the geomet-
rical characteristics of the #- and s-matrices can clearly be seen.

r(x, A, ]J) == j(X) (23)

s(x, 4, u)=— J(x) (24)
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3. The r- and s-matrices in the moving frame

The group element g of SO(N) can be written as

g=gh
where heSO(N—1) and g'eSON)/SO(N—1). For simplicity, first we take the
Schwinger gauge, #=1, namely, g=g". Now we can choose g as [3]

g=Ri(0)R:(02) ... Ry~ 1(On-1) (25)
where R,(8)=exp (677" ") and the generators T** of SO(N') can be chosen as

(Tab Yea= B acOpa— Opclad-
Their commutation relations are

[T, T = 80aT* + 80T = 82, T — 85T

By some calculation, we get
N=2 Nl N-t .
g dg Z dg Z TUS,+1 S}..1CJ+ Z dﬂ, TzS,+[S,'+2 A N (26)
i=1 J=i+l Coi=1
where 5,=sin 8;, c;=cos 6, and T'=T".
If we set diagonal matrix n={1,1,...,1, —1}, then TYe#, T'e #". According to
(10}, it is easy to get A, k, as

N=2 N-1 .
h_u= Z Z (é‘yﬂ,)T”S,H N TS 4] (27)
p=1 j=ik1
N-] ‘
= Z (6,,6,)T‘S,-+JS;+2 e SN2 (28)

1=

Then from (12), the expression for the Lagrangian is

N=1
F= z (aﬂgl a,uet)sf-i- l5:2+2 v -S%\F—l- (29)

i=1

Consequenily, the canonical momenta 7, have the following form
= z_d_ﬂsrzﬂ ---5'?\.’-1- (30)
dt

The fundamental Poisson brackets are:
18.(x), m(3)}=38,;6(x—y)

{0i(x), 0,030} = {mi(x), m,(3)} =0. (1)
Using the above formulae and the following notations:

N-—1
T'(x)= ¥ O.(x)T’ rv-1=0

J=i+l
O,(x)=——2L

SJ-SJ'+1 e e SN=1

1 N-1 ) | ¥-2 N1

Jk=§ r Ter J,,__ Y Y TeT

1=1 i=1 j=i+1
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N -

| N1
Pi(x)= ;1—2 T'RQT(x) ' Pyx) =% ¥ T'xeTr
l =1

e

we begin to caiculate the Poisson brackets between the Lax potential (20).
Take

L(x, 2) = hy(x) +ch ¢oky(x) + sh drko(x)
L(x, w)=H(x)+ch doki(x) + sh pako(x)
then
{Lx, ABL(p, 1)}

=sh ¢:{/m()®ke(»)} *+ch 61 sh ok (x) @ko(1)} + sh b1 (ko) I(1)}
+sh ¢, ch (bz{ko(x)@kl(}')} +sh ¢ sh ¢2{ko(x)®ko(}’)}

= —[(sh /i +ch @, sh $2Pa(x)), & (x)® 116(x—y)
+[sh ¢1Ji+sh @1 ch ¢Pi(x), 18k (x)]6(x—)
—[(sh ¢oP2+ch ¢y sh dadi, Ii(x)® 116(x—y)
+[(sh ¢ Px(x) +sh ¢, ch 2k, 1®h(0)]16(x—y)
+ [sh ¢ sh ¢2Pi(x), 1@ko(x)]6(x—y)

— [sh @ sh @2Pa(x), ko(x)@ 1]8(x—y)

+(sh ¢ P (x) +sh ¢2P2(y) +ch ¢ sh g2 +ch ¢ sh dui )8 (x—y).
(32)

Comparing with equation (3), we immediately get the matrix s(x, A, g):
s(x, A, ) =—4 sh(g; + ¢ )i~} sh ¢,P;(x) = 3 sh §2Pa(x). (33)
Then assuming
r(x, A, p) =3 AT+ 3BJ,— 5 sh ¢, Py(x) + } sh PaPa(x)
and using the following identities:
iy Ky ® 1]+ [ s, 1@k, ]=0
[Jas £ ® 11+ [y, 1@k, 1=0
[Jes 2. ® 1+ 1QA, 1=0
(4, 2 ® 1+ 1@4,]1=0
we also get the matrix r(x, A, i)

?'(JC .;L )=._Sh2 ¢1+Sh2 ¢2J _Sh¢| Sh¢2
T h(Gi—d2) " Sh(di—2)

Ju= 3 sh ¢ Py(x) + 3 sh $2Pa(x). (34)
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Here we see that the field-dependent terms of the #- and s-matrices are only related to

®4{x). the Riemannian connection under the Schwinger gauge on 8 ' [3], which can
be seen more clearly under the gauge transformation given in the next section.

4, Gauge transformation

Now let’s take a look at how r and s change under gauge transformation. After a gauge
transformation 4, the following changes take place

R ()= R (x) =B~ ()R, ()R(x) + B (x) 8,k(x) (35)
e () = Ry () = K (e, () h(x) (36)
Lix, )= L'(x, )
=h(x) +ch ¢ki(x) +sh @ks(x) =h~"(x)h (X)r(x) +ch ¢h™ (x)ey (X)(x)
+sh ¢k (x)ko(x)h(x) + by (X) 81h(x). (37

Noting the identity
(f(x)~F(¥NE (x=p)=~L"(x)o(x ).
we find the changes below:
Hx, &, p)8(x—y)—r(x, 4, 1)6(x~y)
=hT (D@ (Pr(x, &, ©)E(x~y)— 11 ®A(P){L(x, H®H ()}

=Hx)®@ L{A™ ()BL(y, 1)} (x)@H(y)

s(x, &, p}o(x—y)~s'(x, &, p)8(x—y)
=" (X)) R8T (3%, A 1)8(x— ) = 30@A(¥){L(x, 1) ®1'(»)}

+h(xX)& l{h_‘(X)®L(y, PR @A(y). (39)
Since
1@K(7) o) @A ()} =[Nz-l g;l T® (ham")]a(x—y) (40)
i=1 i
H(x)® LA™ (x)®ko( )} = [Nil % (hoA™! )®T‘]6(x—y) (41)
i=1 i
where

Ki= 81418142 . SN
eventually we get
_sh® gy +sh’ ¢ Jom sh ¢, sh ¢,
2 shid; — ¢) sh(¢:— ¢2)
S(x%, Ay 1) =—13 sh(¢ + ¢2)J,— 3 sh 1P} (x) — 3 sh ¢oPHx) (43)

Jy— 1 sh ¢ Pi(x) + } sh ¢, P(x) (42)

r(x, A, p)=
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where

lN—]
P1=5 Y (TR
t=1

N=1

Pa=§ Y W@ (4 ' T'h)
i=1

ha -

ry=2 R, oy, (44)
ki

From equation (44) we can see that T” is just a Riemmanian connection matrix on

SV~ since the way in which it changes under a gauge transformation is the same as

a connection. For example, if we take

Bx)=Ry_2(FOn-2) ... Ra(—8:)R(—8)) (45)
from (44) we obtain
g = F1008 Bvon 1 - (46)
sin &y,

which is exactly the Riemannian connection under the Wu-Yang gauge [3].

In order to relate our r- and s-matrices to the r- and s-matrices given by Maillet
and Forger et al, we take anotber special gauge transformation by replacing #~' with
g. Then there exists

H, '_“ghng-l +g ayg—l =Ju
K#=3kyg—l=_jﬂ-

Putting these two formulas into (19), we get the common linear equation (21). More-
over, noticing

1®g™ (1)} ko(x)@g(3)} = —(Ji+ Pix))8(x— ¥)
g7 (0® Hg)®ko(3)} = (Je+ Px))8(x =)

and replacing sh ¢, ch ¢, and sh ¢, ch ¢, with A, g respectively, we also get equations
(23) and (24). So the two different forms of r- and s-matrices can be associated by a
special gauge transformation, or a frame change, but our #- and s-matrices have more
clear geometric meaning: the field-dependent terms are only related to the Riemmanian
connection on the target manifold S !,
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