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Interaction effects on Wannier functions for bosons in an optical lattice
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We have numerically calculated the single-band Wannier functions for interacting Bose gases in optical lattices
with a self-consistent approach. We find that the Wannier functions are broadened by repulsive interaction. The
tunneling parameter J and the on-site interaction U computed with the broadened Wannier functions are found
to change significantly with the number of atoms per site. Our theory can explain the nonuniform atomic clock
shift observed in Campbell et al., Science 313, 649 (2006).
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I. INTRODUCTION

In condensed matter physics, people are often interested in
the ground state of the system and its low-energy excitations.
This interest allows people to focus only on the lowest band
of the system by mapping the system to a lattice model with
Wannier functions [1]. The Hubbard model is arguably the
most famous of all such lattice models [2]. In addition, Wannier
functions are a more natural and better choice than Bloch
waves for narrow-band materials in computational physics [3].
There is a lot of freedom to choose a set of Wannier functions
as basis and there has been a lot of effort spent finding the
best Wannier functions [4]. However, all the discussion is
done in the context of single-particle physics. The broadening
of Wannier functions by repulsive interactions seems to
have never been discussed in traditional condensed matter
physics.

The situation began to change with the development of
ultracold atomic gases, where the phase transition from
superfluid to Mott insulator was observed with a repulsively
interacting Bose gas in an optical lattice [5,6]. In the conven-
tional theoretical treatment of such a system, the mapping from
the realistic continuous system to the Bose-Hubbard lattice
model is done with a single-particle Wannier function [7].
However, due to the simplicity of the periodic potential and
small energy scales in the system, it is tempting to think that
the broadening of the Wannier function by the on-site repulsive
interactions may have significant effects on the system. There
have been many theoretical efforts [8–13] that try to describe
the interaction effects on the Wannier function.

There is also strong experimental evidence on the broad-
ening of the Wannier function. In the experiment of 87Rb
atomic clock in optical lattice [14], nonuniform frequency
shifts were observed for different occupation numbers per site.
This is clearly due to the broadening of Wannier function by
the repulsive atomic interaction.

In Ref. [15], a self-consistent approach is developed to
account for the interaction effects on Wannier functions. Using
a different set of Wannier functions will result in both a
different tunneling parameter J and an on-site interaction U

for the lattice model, and thus a different ground state. The
self-consistent approach in Ref. [15] uses a general variational
principle to choose the set of Wannier functions that minimizes
the ground state energy of the lattice model. This method is

in spirit the same as the multiconfigurational time-dependent
Hartree for bosons theory [16–19].

In this work we use the self-consistent approach in Ref. [15]
to compute the interaction effects on Wannier functions for a
Bose gas in an optical lattice. We focus on both the superfluid
regime and the Mott insulator regime. The broadened Wannier
functions are used to calculate the tunneling parameter J

and the on-site interaction U in the Bose-Hubbard model.
They are found to be significantly affected by the s-wave
scattering length, lattice strength, and most importantly the
number of atoms per site. At the end, we apply the approach to
the experiment in Ref. [14]; our theoretical results match the
experimental data very well.

Our paper is organized as follows. In Sec. II, we give
a quick review of the self-consistent approach given by
Ref. [15]. In Sec. III, we focus on the superfluid regime for
a one-dimensional optical lattice; the tunneling parameter J

and on-site interaction U are calculated for different lattice
depths and interaction strengths. In Sec. IV, we consider the
Mott insulator regime; J and U are calculated accordingly. In
Sec. V, the theory is applied to the experiment of Ref. [14]
and we find good agreement between our theory and the
experiment.

II. SELF-CONSISTENT APPROACH
FOR WANNIER FUNCTIONS

Here we briefly summarize the self-consistent approach of
Ref. [15], which was developed to compute the interaction
effects on Wannier functions. We consider a Bose gas where
the weak atomic interaction is well described by s-wave
scattering. The second quantized Hamiltonian for this kind
of system is given by Eq. (1):

Ĥ =
∫

d r ψ̂†(r)

[
− �

2

2m
∇2 + V (r)

]
ψ̂(r)

+ g0

2

∫
d r[ψ̂†(r)ψ̂†(r)ψ(r)ψ(r)], (1)

where m is the atomic mass and V (r) describes an optical
lattice. And g0 = 4π�

2as/m is the interaction strength related
to the s-wave scattering length as . The single-band approx-
imation expands the boson field operator ψ(r) as shown by
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Eq. (2):

ψ̂(r) =
∑

j

âjWj (r), (2)

where Wj (r) = W (r − rj ) is the Wannier function at site j

and âj is the associated annihilation operator. The ground state
|Gt 〉 in the single-band approximation can be generally written
as |Gt 〉 = F (â†

j )|vaccum〉, where F is the function to be
found by solving the resulting lattice model. The ground state
energy EG = 〈Gt |Ĥ |Gt 〉 certainly changes with the choice of
Wannier function Wj (r). The best Wannier function is the
one that minimizes the single-band ground state energy EG.
Mathematically, the minimization is achieved by using the
variation given by Eq. (3):

δEG

δW ∗(r)
− δ

∑
j μjhj

δW ∗(r)
= 0, (3)

with the orthonormal constraints given by Eq. (4):

hj =
∫

d r W ∗(r)W (r − rj ) = δ0,j . (4)

μj ’s are the usual Lagrangian multipliers. With straightfor-
ward computation, a nonlinear equation [Eq. (5)] was obtained
for the interacting Wannier functions [15]:∑

j

μjW (r − rj )

=
∑
j1,j2

〈â†
j1
âj2〉H0W (r + rj1 − rj2 )

+ g0

j3j4∑
j1j2

〈â†
j1
â
†
j2
âj3 âj4〉W ∗(r + rj2 − rj1 )

×W (r + rj2 − rj4 )W (r + rj2 − rj3 ), (5)

where 〈·〉 represents averaging over the ground state of the
system and H0 = − �

2

2m
∇2 + V (r). The ground state is found

with the Bose-Hubbard model shown by Eq. (6):

Ĥh = −J
∑
〈ij〉

â
†
i âj + U

2

∑
i

â
†
i âi(â

†
i âi − 1) , (6)

where

J = −
∫

d r W ∗(r − rj )H0W (r − rj−1) (7)

and

U = g0

∫
d r|W (r)|4. (8)

Euations (5) and (6) need to be solved self-consistently
together to find the best Wannier function W (r).

In this work, except in Sec. V where we try to explain a
three-dimensional experiment, we focus on one-dimensional
optical lattice V (x) = V0 sin2(kLx), where V0 is the optical
lattice strength and kL is the wave vector of the laser generating
the optical lattice. In our calculation, g0 is in units of Erπ

3/k3
L,

where Er = �
2k2

L/2m is the recoil energy. In the case of
87Rb , as = 5.32 nm and g0 ≈ 0.12Erπ

3/k3
L.

FIG. 1. (Color online) The ground state energies of a six-site
Bose-Hubbard model computed with the usual single-particle method
(blue line) and our self-consistent method (red line). The mean
particle number per site n0 = 1. g0 = 1Erπ

3/k3
L.

We first consider an example, which is a one-dimensional
six-site Bose-Hubbard model with one atom per site. For
this simple case, we can find its ground state with exact
diagnalization [20]. We use two different ways to compute
J and U in the model: (1) with the single-particle Wannier
function and (2) with the interacting Wannier function obtained
self-consistently with Eqs. (5) and (6). Figure 1 shows a
comparison of the ground state energy calculated by these two
methods for the Bose-Hubbard model. The energy computed
with the self-consistent method is indeed lower. Figure 2 shows
one Wannier function that we obtained with the self-consistent
method, which is apparently broadened by the interaction.
These broadened Wannier functions can influence the tunnel-
ing parameter J and the on-site interaction U in the single-band
Bose-Hubbard model. In the following two sections, we shall
compute the broadened Wannier function in both the superfluid
regime and Mott regime for one-dimensional systems.

FIG. 2. (Color online) Comparison between a single-particle
Wannier function (blue line) and its corresponding broadened
Wannier function (red line) obtained by the self-consistent method.
x is in units of λ/2, where λ = 2π/kL. In this calculation, the lattice
model has ten sites with n0 = 7, V0 = Er , and g0 = 1Erπ

3/k3
L. The

on-site interaction is U ≈ 0.33Er , which is smaller than the band
gap.
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FIG. 3. (Color online) Superfluid regime with ten lattice sites. (a) Change of tunneling parameter J with potential depth for different n0.
g0 = Erπ

3/k3
L; (b) change of J with interaction strength for different n0. V0 = Er ; (c) change of on-site interaction U with potential depth for

different n0. g0 = Erπ
3/k3

L; (d) change of U with interaction strength for different n0. V0 = Er .

III. SUPERFLUID REGIME

In the superfluid regime all the particles condense into the
ground state of the system which is a Bloch state. Therefore,
it is more convenient to use the Bloch basis in which the
nonlinear equations in Eq. (5) become Eq. (9) [15]:

ν̃kψk(r) = H0ψk(r)

+ g0

∑
〈k1 kk3 k4〉

Pk1 kk3 k4ψ
∗
k1

(r)ψk3 (r)ψk4 (r), (9)

where Pk1 kk3 k4 = 〈b̂†k1
b̂
†
kb̂k3 b̂k4〉/〈b̂†kb̂k〉 with b̂k = 1√

N

∑
j

âne
−ik·rj . In the superfluid phase, the Bogoliubov mean-field

theory [21] can be used to determine and compute Pk1 kk3 k4 and
other coefficients in Eq. (9) [15]. There is no deed to solve the
lattice model in Eq. (6).

In our computation, we expand the Bloch function ψk with
plane waves according to Eq. (10):

ψk(r) = 1√
N�

∑
K

a(k + K )ei(k+K )·r , (10)

where � is the volume of a cell and N is the number of
cells. After plugging Eq. (10) into Eq. (9), we obtain a set of
nonlinear equations for a(k)’s. We solve these nonlinear equa-
tions numerically and then construct the Wannier functions by

carefully choosing the phases of all the Bloch functions with
Kohn’s method [22].

Figure 3 shows how J and U change with lattice strength
V0 and interaction parameter g0 for different n0, the mean
particle number per site. It is apparent that the different curves
for different n0’s have roughly the same overall trend but they
do shift from each other significantly. For J , as n0 increases,
the curves for J shift upwards and the curves for U shift
downwards, meaning J increases with n0 while U decreases.
The increase of J and decrease of U with n0 is due to the
broadening of Wannier functions. In the range shown in Fig. 3,
J can change up to 100% at n0 = 3 compared to that of a
single-particle result, while U can change up to 30%.

IV. MOTT-INSULATOR REGIME

In the deep Mott-insulator regime the ground state can be
approximated with |n0,n0, . . . ,n0〉. As a result, the nonlinear
equations for Wannier function in Eq. (5) are simplified to
Eq. (11):
∑

j

μj

N0
W (r − rj ) = H0W (r) + g0(n0 − 1)|W (r)|2W (r)

+ 2g0n0

∑
rj �=0

|W (r − rj )|2W (r). (11)
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FIG. 4. (Color online) Mott-insulator regime with ten lattice sites. (a) Change of tunneling parameter J with potential depth for different
n0. g0 = 0.5Erπ

3/k3
L; (b) change of J with interaction strength for different n0. V0 = 25Er ; (c) change of on-site interaction U with potential

depth for different n0. g0 = 0.5Erπ
3/k3

L; (d) change of U with interaction strength for different n0. V0 = 25Er .

In our numerical computation, we expand the Wannier
function in terms of single-particle Wannier functions on the
same site and its nearest neighbors according to Eq. (12):

W (r − rj ) =
M∑

n=1

[cnwn(r − rj−1)

+ bnwn(r − rj ) + cnwn(r − rj+1)], (12)

where wn(r − rj ) is the single-particle Wannier function for
Bloch band n at site j . After conducting a convergence test,
we set M = 3. We solve Eq. (11) numerically to find the
interaction-broadened Wannier functions, and then compute J

and U . The results are shown in Fig. 4. It is clear that the general
trends how J and U change with g0 and V0 in the Mott regime
are similar to the ones in the superfluid regime. However, there
are differences. Specifically, as shown in Figs. 4(a) and 4(c),
the change of both J and U with n0 has little dependence
on the lattice depth V0. We notice from Fig. 4 that with our
self-consistent approach J can change up to 32% at n0 = 4
compared to that of single-particle Wannier function, while U

can change up to 14%.

V. NONUNIFORM ATOMIC CLOCK SHIFT

Atomic clock frequency can shift due to the collision of
atoms. In an experiment reported by Ref. [14], the atomic clock
shift of 87Rb was measured. In the experiment, a 87Rb Bose-
Einstein condensate was prepared in the |F = 1,mf = −1〉
state and loaded into a three-dimensional optical lattice.
With the increase of the lattice depth, the system changed
from the superfluid phase to a Mott-insulator (MI) phase.
Due to the trapping potential the atomic gases was separated
into MI shells, each of which has a different occupation number
n0. Radio waves were used to excite atoms in the F = 1 state to
F = 2 state. In different hyperfine states, the scattering lengths
between atoms are different. Therefore, the atoms transferred
to the F = 2 state have a slightly different mean-field energy;
this can cause a clock frequency shift, which is shown by
Eq. (13) [21,23,24]:

δν = U

h
(a21 − a11)/a11, (13)

where a11 and a22 are scattering lengths for atoms in the
F = 1 and F = 2 states, respectively, and a12 is the scattering
length between an atom in the F = 1 state and an atom in
the F = 2 state. If the on-site interaction U is calculated with
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FIG. 5. (Color online) Clock shifts for different number of atoms
per site n0. The experiment data for the trhe-dimensional lattice depth
of V0 = 35Er are from Ref. [14] and provided courtesy of Gretchen
Campbell.

single-particle Wannier functions, this clock shift is indepen-
dent of n0, the number of atoms per site. However, it was
observed in the experiment that the clock shift decreases with
n0 as shown in Fig. 5.

In our view, this decrease of clock frequency shift in
Fig. 5 is caused by the broadening of Wannier function: when
n0 increases, the Wannier function becomes broader and U

decreases as shown in Figs. 4(c) and 4(d); consequently, the
clock shift decreases. With our self-consistent method, we

calculated the interacting Wannier functions for different n0’s
in the Mott-insulator regime achieved in Ref. [14]. We then
computed U and the clock shift δν; the results are compared
to the experimental results in Fig. 5. There is very good
agreement.

VI. CONCLUSION

With a self-consistent theory developed earlier [15], we
have computed the effect of interactions on single-band
Wannier functions. We considered both the superfluid regime
and the Mott regime. We found that as the result of broadening
of the Wannier function through interactions, the tunneling
parameter J and U can change significantly. Our theory was
applied to a clock shift experiment; very good agreement was
found between our theoretical results and experimental results.
The regime near the transition from superfluid to Mott insulator
is not studied in this work and will be investigated in the
future.
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