Lecture 34

Higher-order Gaussian Beams

We obtained the Gaussian beam solution as an exact solution to the paraxial wave equation by
starting with a spherical wave, which we know is an exact solution to the full Helmholtz equation,
and applying the paraxial (Fresnel) approximation to it. However, this turns out to give only the
lowest-order solution of a whole family of possible solutions.

A general approach to solve the paraxial wave eqn. is to start with solutions of the form

—ik(x2+y2 )/Zq(z)

o(x, vy, z) =A(z)e

Plug into the paraxial wave eqgn. and obtain differential equation for A(z) and q(z).

This approach is carried out in detail in Siegman sec. 16.4 and Haus appendix S. We don’t have
the time to carry out the solution, but it is important to note the final results for future reference.
The two most common forms of the general solution are:

(i) Hermite-Gaussians, most useful when_rectangular coordinates are the most relevant ,

and

(ii) Laguerre-Gaussians, most useful in systems with cylindrical symmetry

Hermite-Gaussian solution:

The general form of the solution ¥ is then
¥ ~ (Hermit polynomials) x (Gaussian).
Won ~ [Hn (X)H,, (y)] X (Gaussian).
It is important to note that the complex radius q(z) still satisfies

1 1 . 2

4(2) R(2) 2w (2)

The full expression is given in Siegman eqn. 16-54 or 17-40(see handout).

(note that our w(x, y, z) isbasically Siegman’s f(x, y, z)
Here it will suffice to note that the low-order Hermite polynomials are

H, = 1 (this yields our lowest-order Gaussian beam)
H, (x)=2x (odd)

H, (x)=4x*—2(even)
H, () =8x° —12x

H,., (x)=2xH,(x)—2nH,_ (X)

For plots of these, see Siegman fig.17.19



Note that the arguments of the Hermite polynomials in the i are scaled toW(Z), which
means that the shape of the beam does_not change with propagation, only its size does.

. . . nd . . .
e.g. W, looks like a zero-order Gaussianiny, and a 2" order Hermitz-Gaussian in x, forall z:
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Higher-Order Hermite-Gaussian Mode Functions

A The free-space Hermite-gaussian TEM,,,, solutions derived in the preceding
chapter can be written, in either the z or y transverse dimensions, and with the
plane-wave e~7%* phase shift factor included for completeness, in the normalized

form
n/2

7z ()" ()" ()" 85T

where the Hy,’s are the Hermite polynomials of order n, and the parameters
d(z), w(z) and ¥(z) are exactly the same as for the lowest-order gaussian mode
as given in Equation 17.5. These same functions can be written in alternative
form, emphasing the spot size w(z) and Guoy phase shift 1(z), in the form

2)"‘ (epr'(znﬂw(zn)”’ G

T 2'nlw(z)

(40)

i
(41)

V2z . . kx? z?
X Hn (m)m["*“’m‘m]’

where 1(z) is still given by (2) = tan~'(z/zg).

N Note the important point that the higher-order modes, because of their more
- rapid transverse variation, have a net Guoy phase shift of (n + 1/2)¥(z) in
traveling from the waist to any other plane z, a8 compared to only %(z) for
the lowest-order mode. This differential phase shift between Hermite-gaussian .
modes of different orders is of fundamental importance in explaining, for example,
why higher-order transverse modes in a stable laser cavity will have different
oscillation frequencies; or how the Hermite-gaussian components that add up to
make a uniform rectangular or strip beam in one transverse dimension at an
input plane located in the near field (at a beam waist) can add up to give a
(sinz)/z transverse variation for the same beam in the far field.

Hermite-Gaussian Mode Patterns

Figure 17.18 illustrates the transverse amplitude variations for the first six
even and odd Hermite-gaussian modes. Note that the first few (unnormalized)

Hermite polynomials are given by

Hy=1 Hy(z) =2z
(42)
Hy(z) =422 -2 Hs(z) = 82° — 12z.
These polynomials obey the recursion relation
— Hp1(z) = 2zH, (z) — 2nH,—1(z) (43)
|
i

which can provide a useful way of calculating the higher-order polynomials in

numerical computations.
The Hermite-gaussian beam functions alternate between even and odd sym-

metry with alternating index n. The n-th order function has n nulls and n 4 1 -
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Gouy effect: the n- m" Hermite-Gaussian @, contributes an excess phase
(n+m+1)¢(z)

4 Z
Where ¢=tan™" — just as before.
Zg

Thus higher order Hermite-Gaussian has a larger excess phase.
(One of the most important physical consequences of this is that the transverse modes of lasers



oscillate at slightly different frequencies; thus multi-transverse-mode lasers exhibit
“mode-beating.”)

Theorem: The Hermite-Gaussian solutions form a complete set of orthonormal functions.

This means that any electric field at some plane z can be written as
—ikz

Ex, v, 2)=622ColWnm
nm

¢ = dedyﬂx’g_w(pnm(x, y,2)

0
” @nm(on’m' = 5nn'§mm'

This could be used to solve arbitrary diffraction problems (within the paraxial approximation, of

course).
r [ J ’

3 |
_U —2 s
ot TR

The complicated diffraction pattern on the observation screen is, in this picture, just the

consequence of all the different phase shifts (n+m+1) ¢(Z) , and the amplitudesC,_ .

In practice, this approach is useful only in limited situations, where only a few modes must be
kept.

Laguarre-Gaussian modes

- Write paraxial wave eqgn. in cylindrical coordinates (r, o, Z)

—> solution
@ ~ (Laguarre polynomial) x (Gaussian)
-see Siegman fig.17.21 for representative plots

(note that this set of solutions also forms a complete orthonormal set )

Diffraction: Integral Approach

We shall shortly see how an integral solution to the Helmholtz equation can be obtained, but
before doing so, it is worthwhile to consider diffraction from a different point of view, namely
that of Huygen’s Principle.

Huygen’s Principle

Every point on a wavefront can be considered to be a source of a spherical wave (Huygen’s
wavelet). The envelope of the wavelets gives the wavefront at a later time.



(See Guenther P.326 for a simple derivation of the laws of reflection and refraction from this
principle.)

Huygen’s Principle is usually applied to diffraction problems in the following simple way. Suppose
we know the (scalar) optical field E(x, y) over some aperture in a plane 2. (see diagram).The

basic idea is to consider each point in the aperture to be a source of Huggen’s wavelets. The total

field at an observation point P is just the sum (integral) of all the wavelets!

Roughly speaking, the i" element in the aperture contributes a field Ei (F.) to the total field

in 2., and radiates a Huggens spherical wave

€ (7)-°

Now, again we crudely say that the total field at P is the sum of all the elements j in Y. . Of course

-ik'R

we take the continuum limit so the sum goes over into an integral

-ik'R
E, ~[]E, (x y) oy

z



In fact, this expression would be correct if we just put a factor (i //1) in front of the integral.

We shall see below in a “rigorous” treatment of the problem how this factor arises. Here it will

suffice to note that

1. The “I” comes essentially from the Gury phase shift

2. The “A” factor has no “a priori” interpretation — but might be thought it as: source strength
~field per wavelength

e—iE-ﬁ

R

Thus |E, = ijzj E(x.y) dxdy

This is known as the Huygens-Fresnel integral. The physical idea behind it is quite simple and
important to remember (!), but our argument is at best only a plausibility argument. Our next job
is to provide some proof that indeed this does represent a valid solution to the problem.

Fresnel — Kirchhoff Theory

The goal is to find a solution to the Helmholtz eqn.
[Vz +k2]1//(F) =0

Where the (scalar) electric field is
E(F,t)=Ew/(r)e”

(i.e. we consider a pure time-harmonic wave ).
CiNote slight change in notation / meaning of I/ - it’s the scalar field amplitude not a slowly

varying envelope

Of course, since Helmholtz’s eqn. is linear, we can find solutions for waves more complicated than
simple harmonic (i.e. for wave groups) by linear superposition of the pure-harmonic solutions.

Huygen’s Principle says we should be able to find the field at any point Po given some initially

known wave. The mathematical statement of this idea can be given starting from Green’s
theorem, which is obtained from Gauss’s theorem familiar from vector calculus in the following
way.

Gauss’s theorem.

{J, F - fids = [ff, V Fdv

Where F =vector function (nonsingular in V)

S = surface enclosing volume V

let F =gV (@ =scalar functions)



> [l,(eVy -R)ds=[[[, V-(eVw)aV = I}, (¢V?y + Vo Vi) dV
We could just as well let |E =yV@, giving

[l,yV o-nds = [[f, (yW?p+Vy - Vo)dV
Subtracting the two yields Green’s theorem

(Y v~y p)-fids = [, (972 —y¥7p) AV
This is often written in a slightly different way, using

op

Viy-A=—— (A =unit normal to surface S)

0 0 2 2

The general problem: suppose we know E = Eogo(F)ei“’t on some surface S. Given@ on S,

we want to know ¢ at some point Py inside S.

(@, = solutions of Helmholtz’s eqn. in V)

S, = small surface enclosing P, (spherical)
V = volume bounded by S on outside and Sg on inside.

— e
Let 1//(r01) =——,I,; measured fromP,.

01

This is our “Green’s function.” It is clearly a spherical wave centered on Po .



In volume V, the field has no sources =>

(V2 +k Jy=0(V £k )@=

=

I, (V% —w¥ )V =}, (pwk Zypk Ydv =0
= [fs, +]ls=0 (integral over total surface bounding V)

op Oy op Oy
*) - ——p—— |ds = ——p—|d
(*) .Usg(‘// - (”an) s ﬂs(wan (Dan] s

First consider the integral over Sg = small sphere of

radius & centeredonP:
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If we are on Sg, then I, =&, and we can introduce the solid angle element

s
&

Then

1 ik, g e ™ dp) , l: - 5(0} —ik
S+—)e “p———— |edQ= 1+ike)p—e— e dQ
HSE(SZ g) ? £ 8njg HS ( 8)(/) g@n

Now let w( Sg shrinks to an infinitesimal volume around Po ).The only nonzero term in
the integralis  [[; @dQ = 47p(R))

Thus we have ,from (*)

P. 357,
()| 2oy 2 (e | g
P =5 s r, on Y on y

This is the Helmholtz-Kirchhoff integral theorem.

0
It says we know the field at Po given its value (and thus its derivative —— also) on any surface

on
S containing P .

Now suppose we have a point source at F’S , and we want the field at PO, but there is an gpaque
screen containing an aperture between them:



We take our surface S enclosing P, to be as shown:




