
Lecture 34 

Higher-order Gaussian Beams  

We obtained the Gaussian beam solution as an exact solution to the paraxial wave equation by 

starting with a spherical wave, which we know is an exact solution to the full Helmholtz equation, 

and applying the paraxial (Fresnel) approximation to it. However, this turns out to give only the 

lowest-order solution of a whole family of possible solutions. 

 

A general approach to solve the paraxial wave eqn. is to start with solutions of the form  

      
 2 2 /2 ( )ik x y q z

e
 

（x，y，z）=A(z) ， 

Plug into the paraxial wave eqn. and obtain differential equation for A(z) and q(z). 

 

This approach is carried out in detail in Siegman sec. 16.4 and Haus appendix S. We don’t have 

the time to carry out the solution, but it is important to note the final results for future reference. 

The two most common forms of the general solution are: 

(i) Hermite-Gaussians, most useful when rectangular coordinates are the most relevant , 

and  

(ii) Laguerre-Gaussians, most useful in systems with cylindrical symmetry  

 

Hermite-Gaussian solution: 

The general form of the solution   is then  

 ~ (Hermit polynomials) (Gaussian). 

 ( ) ( ) nm n mH x H y  (Gaussian). 

It is important to note that the complex radius q(z) still satisfies  
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The full expression is given in Siegman eqn. 16-54 or 17-40(see handout). 

(note that our （x，y，z）  is basically Siegman’s （x，y，z） 

Here it will suffice to note that the low-order Hermite polynomials are  

       0 1H  (this yields our lowest-order Gaussian beam ) 

        1 2x xH  (odd) 
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For plots of these, see Siegman fig.17.19 



Note that the arguments of the Hermite polynomials in the   are scaled to  w z , which 

means that the shape of the beam does not change with propagation, only its size does. 

e.g. 
1  looks like a zero-order Gaussian in y , and a 2nd

 order Hermitz-Gaussian in x , for all z : 

 



 



 



 



 
 

Gouy effect:  the n-
thm  Hermite-Gaussian nm  contributes an excess phase 

          1n m z   

Where 
1tan

R

z

z
   just as before. 

Thus higher order Hermite-Gaussian has a larger excess phase. 

(One of the most important physical consequences of this is that the transverse modes of lasers 



oscillate at slightly different frequencies; thus multi-transverse-mode lasers exhibit 

“mode-beating.”) 

Theorem: The Hermite-Gaussian solutions form a complete set of orthonormal functions. 

This means that any electric field at some plane z can be written as  
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This could be used to solve arbitrary diffraction problems (within the paraxial approximation, of 

course). 

 
 

The complicated diffraction pattern on the observation screen is, in this picture, just the 

consequence of all the different phase shifts (n+m+1)  z , and the amplitudes nmc . 

In practice, this approach is useful only in limited situations, where only a few modes must be 

kept. 

 

Laguarre-Gaussian modes 

- Write paraxial wave eqn. in cylindrical coordinates  , ,r z  

solution  

          (Laguarre polynomial) (Gaussian) 

-see Siegman fig.17.21 for representative plots 

(note that this set of solutions also forms a complete orthonormal set ) 

 

Diffraction: Integral Approach 

We shall shortly see how an integral solution to the Helmholtz equation can be obtained, but 

before doing so, it is worthwhile to consider diffraction from a different point of view, namely 

that of Huygen’s Principle. 

 

Huygen’s Principle 

Every point on a wavefront can be considered to be a source of a spherical wave (Huygen’s 

wavelet). The envelope of the wavelets gives the wavefront at a later time. 



       

(See Guenther P.326 for a simple derivation of the laws of reflection and refraction from this 

principle.) 

 

Huygen’s Principle is usually applied to diffraction problems in the following simple way. Suppose 

we know the (scalar) optical field E(x, y) over some aperture in a plane   (see diagram).The 

basic idea is to consider each point in the aperture to be a source of Huggen’s wavelets. The total 

field at an observation point P is just the sum (integral) of all the wavelets! 

 

Roughly speaking, the ith
element in the aperture contributes a field  i iE r  to the total field 

in , and radiates a Huggens spherical wave  
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Now, again we crudely say that the total field at P is the sum of all the elements j in . Of course 

we take the continuum limit so the sum goes over into an integral  
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In fact, this expression would be correct if we just put a factor  /i   in front of the integral. 

We shall see below in a “rigorous” treatment of the problem how this factor arises. Here it will 

suffice to note that  

1. The “I” comes essentially from the Gury phase shift  

2. The “ ” factor has no “a priori” interpretation – but might be thought it as: source strength 

~field per wavelength  

 

Thus  ,
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This is known as the Huygens-Fresnel integral. The physical idea behind it is quite simple and 

important to remember (!), but our argument is at best only a plausibility argument. Our next job 

is to provide some proof that indeed this does represent a valid solution to the problem. 

  

Fresnel – Kirchhoff Theory  

The goal is to find a solution to the Helmholtz eqn. 

       2 2 0    k r  

Where the (scalar) electric field is  

         0, t  i tE r E r e  

(i.e. we consider a pure time-harmonic wave ). 

¤Note slight change in notation / meaning of  - it’s the scalar field amplitude not a slowly 

varying envelope  

 

Of course, since Helmholtz’s eqn. is linear, we can find solutions for waves more complicated than 

simple harmonic (i.e. for wave groups) by linear superposition of the pure-harmonic solutions. 

 

Huygen’s Principle says we should be able to find the field at any point 0P  given some initially 

known wave. The mathematical statement of this idea can be given starting from Green’s 

theorem, which is obtained from Gauss’s theorem familiar from vector calculus in the following 

way. 

 

Gauss’s theorem.  

      ˆ
S V
F nds FdV     

Where F = vector function (nonsingular in V) 

       S = surface enclosing volume V 

 

Let   1 scalar functionsF       
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We could just as well let F    , giving  
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s V

nds dV             

Subtracting the two yields Green’s theorem  
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This is often written in a slightly different way, using  
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The general problem: suppose we know  0

i tE E r e    on some surface S. Given  on S, 

we want to know   at some point 0P  inside S.  

( ,  = solutions of Helmholtz’s eqn. in V) 

 

S = small surface enclosing 0P  (spherical)  

V = volume bounded by S on outside and S on inside. 

Let  
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  measured from 0P . 

This is our “Green’s function.” It is clearly a spherical wave centered on 0P . 

 



In volume V, the field has no sources => 
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First consider the integral over S = small sphere of radius   centered on 0P : 
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     01n̂ r   

If we are on S , then 01r  , and we can introduce the solid angle element  
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Now let 0  ( S  shrinks to an infinitesimal volume around 0P ).The only nonzero term in 

the integral is  
S

d
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This is the Helmholtz-Kirchhoff integral theorem.  

It says we know the field at 0P  given its value (and thus its derivative 
n




 also) on any surface 

S containing 0P . 

Now suppose we have a point source at sP  , and we want the field at 0P , but there is an opaque 

screen containing an aperture between them: 



We take our surface S enclosing 
0p  to be as shown: 

 


