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Interacting domain walls in an easy-plane ferromagnet
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The Landau-Lifshitz equation for an anisotropic~easy-plane! ferromagnet is formulated as a Riemann-
Hilbert problem on a Riemann surface of the spectral parameter. Exact multiple domain wall solutions can be
obtained in a systematic and exhaustive manner by considering all possible pole arrangements on the Riemann
surface. Explicit calculations for up to four poles have been carried out, yielding all possible double wall
solutions, including states of colliding walls, breather modes of bound walls, and a set of solutions correspond-
ing to marginally bound walls.
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I. INTRODUCTION

Over the past three decades, an enormous amount o
erature has established the importance throughout physic
solitons and the underlying completely integrable mode
Although such models are idealizations, they provide oth
wise unobtainable analytic insight into nonlinear dynami
new states about which to perturb, and exact results aga
which to benchmark approximate and numerical metho
While a variety of techniques for studying integrable mod
and for discovering soliton solutions exists now, the study
Riemann-Hilbert problems, initially introduced in the 1970
as a reformulation of the inverse scattering problem,1 has
proved especially fruitful in the fields of integrable differe
tial equations and integrable statistical models.2–5 In this pa-
per, we show that the Riemann-Hilbert approach is the s
ficiently more simple and elegant way to construct t
multidomain wall states of an anisotropic~easy-plane! ferro-
magnet. The important point is that these solutions are q
nontrivial, for example, includes moving domain walls.

The dynamics of a ferromagnet can be described by
Landau-Lifshitz equation

]M

]t
5M3S ]2M

]x2
1JM D , ~1!

whereM (x,t)5(Mx ,M y ,Mz) is magnetization vector, an
J5diag(Jx ,Jy ,Jz) describes the magnetic anisotropy. F
the most general biaxial ferromagnet withJxÞJyÞJz , the
multisoliton solutions including ones describing bound sta
and the collision of domain walls has been discussed in R
6. All solutions of uniaxial anisotropic ferromagnet withJx
5JyÞJz can be found as a limit caseJx→Jy of solutions for
the biaxial ferromagnet in Ref. 6. There is a twofold dege
eracy in the ground state for the easy axis case withJx5Jy
,Jz . Here we consider the easy-plane case withJx5Jy
.Jz , where the ground state has a continuum of degener
This applies to materials such as CsNiF3 and
(C6H11N H3)Cu Br3.

In the easy-plane case, the construction of soliton so
tions of Eq.~1! has been discussed in many papers.5,6 Lax
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representations have been found in Refs. 7,8. The scatte
states of colliding walls have been found by the Hiro
method.9 Two-parameter compact soliton solutions have a
been constructed by an ansatz10 and Darboux matrix.11 The
inverse scattering problem of biaxial ferromagnet was c
sidered on the ground of the Riemann-Hilbert problem o
torus.3,4 For any uniaxial limit case~an easy axial or easy
plane!, the torus became degenerate and the standard
mann surface appears. In this paper, we formulate
Riemann-Hilbert problem on a standard Riemann surfa
which can be easily solved to yield multiple parameter fam
lies of solitons in a systematic manner.

II. THE RIEMANN-HILBERT METHOD

The Riemann-Hilbert method works for general initi
value problems of integrable equations, and reduces in
system of linear algebraic equations for pure soliton so
tions which can be solved in closed form.2–5 Following stan-
dard techniques,7 we introduce the ‘‘lax pair’’ whose com-
patibility equation reproduces Eq.~1!:

]xC5LC, ] tC5NC, ~2!

whereL andN are 232 matrices defined by

L52 ilMzsx2 imMxsy2 imM ysz ,

N5 i2m2Mzsx1 i2mlMxsy1 i2mlM ysz2 il~Mx]xM y

2M y]xMx!sx2 im~M y]xMz2Mz]xM y!sy

2 im~Mz]xMx2Mx]xMz!sz . ~3!

Thes ’s are Pauli matrices. The spectral parametersl andm
satisfyl25m214r2, wherer5 1

4 (Jx2Jz)
1/2.

Our Riemann-Hilbert method begins by ‘‘rationalizing
the constraint between the spectral parameters by writinl
5z1r2z21 and m5z2r2z21, wherez can be regarded a
the independent~i.e., unconstrained! spectral parameter
Note that the operatorsL andN are analytic functions of the
independent parameterz, except at the singularitiesz50 and
©2002 The American Physical Society16-1
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z5`. Furthermore, the operators have the following symm
tries with respect to discrete transformations in the comp
z plane

L~z!52L†~ z̄![2T1L~z!,

L~z!5szL~r2z̄21!sz[T2L~z!, ~4!

where L† and L̄ indicate Hermitian and complex conjuga
tions of L, respectively. The same symmetries are also sa
fied by the operatorN. These properties imply the solvabilit
of the Riemann-Hilbert problem and associated integral
algebraic equations.12

Let us consider the easy-plane ferromagnet with
ground stateM05(0,1,0). The corresponding Jost solutio
of the scattering problem may be chosen asC0
5e2 im(x22lt)sz, and the solution of compatibility Eq.~2! is
written asC5J(x,t;z)e2 im(x22lt)sz, where J is a 232
matrix. Soliton solutions can be generated by studying
Riemann-Hilbert problem forJ, which requires the follow-
ings.

~i! J andJ21 must be analytic inz everywhere including
` and 0 except for some poles$zj%.

~ii ! J must satisfy the symmetriesJT1J5I and T2J
5J to ensure the symmetries forL andN. Such symmetries
require that the set of poles$zj% be invariant under reflection
about the real axis and inversion about the circleuzu5r.

~iii ! JU j must be analytic atz5zj for some 232 matrix
of the form

U j~x,t;z!5e2 im(x22lt)szv je
im(x22lt)sz, ~5!

wherev j is rational inz with a pole atzj and detv j is ana-
lytic and nonvanishing atz5zj .

~iv! L obtained throughJ must have the formL5zL1
1z21L2, as in the original Lax pair.

Some explanations are in order. First, the matricesv j and
the pointszj define the discrete part of scattering data a
thus are naturally associated with solitons. We will consi
the case of two poles corresponding to a single domain w
and the case of four poles or two double poles correspon
to double domain walls explicitly. Second, the unita
‘‘twist’’ in Eq. ~5! ensures that any Jost solutionC satisfies
the Lax pair~2! for someL andN rational inz with poles at
0 and` of the correct order. Third, one can readily show th
condition ~iii ! remains invariant ifv j is replaced byv j8
[v jwj for somewj5wj (z) analytic with nonvanishing de
terminant atz5zj . We use this invariance to define a
equivalence relation ‘‘; ’’ which we write asv8;v. Then
the symmetry condition~ii ! requires thatT1v1;v2

21, T1v2

;v1
21, T2v j;v j . Finally, the condition~iv! is necessary be

cause a general solution of the first three conditions can y
a L that has az0 term which does not exist in the origina
definition ~3!.

We now outline the procedure for the solution of o
Riemann-Hilbert problem. We first choose a certain num
of poles and the scattering matricesv j according to the sym-
metry requirements. Then the solutionJ is determined by
the conditions~i!, ~ii !, and~iii ! up to a left matrix multiplier
17241
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G(x,t) independent ofz. Thus we can proceed with th
unique solutionj(x,t;z) which satisfies~i!, ~ii !, ~iii !, and a
normalization conditionj(x,t;r)5I . Once such aj has been
found, we can apply condition~iv! to determine the multi-
plier G(x,t) to obtainJ5Gj.

In the following, we show how the multiplierG and the
final solutions for the magnetization can be expressed
terms ofj at particular values ofz. First, the symmetries for
both J and j imply that G5eiv(x,t)sx with v(x,t) being a
real scalar function. Then the Jost function can be written
C5eivsxje2 im(x22lt)sz, and theL operator can be obtaine
from the first of Eqs.~2! as

L5eivsx~]xjj212 imjszj
211 i ]xvsx!e

2 ivsx. ~6!

Becausej is analytic everywhere except for some poles, t
first two terms inside the bracket in the above express
must be analytic everywhere except forz50 andz5`, and
must have the following analytic form:

]xjj212 imjszj
215Q01z21Q11zQ2 , ~7!

where the coefficientsQj are matrices independent ofz.
They can be expressed in terms ofj at particular values ofz
by comparing the two sides of the last equality. By taki
z→` and z→0, we find Q252 i j(`)szj

21(`) and Q1
5 i j(0)szj

21(0), respectively. Similarly, by takingz5r
and z52r, we obtain Q05 1

2 ]xj(2r)j21(2r). Finally,
the lack ofz0 term in theL operator as specified in conditio
~iv! demands thati ]xv sx1Q050. Utilizing the above
result for Q0, this equation can be easily solved to yie
e2 i2vsx5j(2r).

III. SINGLE DOMAIN WALL

In the absence of any pole,J must be independent ofz
and the solution is the ground state. The case of a single
~or any odd number of poles! is ruled out because it is im
possible to satisfy both symmetriesT1 andT2. The simplest
nontrivial case is two simple polesz1 and z2 on the circle
uzu5r with z15 z̄25reif as shown in Fig. 1~a!, which gives

FIG. 1. Poles for different domain wall solutions.
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BRIEF REPORTS PHYSICAL REVIEW B 65 172416
the well known solution of one domain wall. As a demo
stration of how to proceed with the Riemann-Hilbert metho
we first find out this simplest nontrivial solution.

We choose the scattering matrices with the triangu
form

v15S 1
b1

z2z1

0 1
D , v25S 1 0

b2

z2z2
1D , ~8!

where b252b̄1 and b̄ j /bj5 z̄j /zj because of the symme
tries. This special triangular form13 ensures that the solutio
approaches the ground state atx56`. The twisted scatter-
ing matricesU j have the same form as above, except that
coefficientsbj are replaced bycj5bje

i2m(zj )[x22l(zj )t] .
It follows from ~i! and the normalization ofj at z5r that

the solutionj(x,t;z) must have the form

j~z!5I 1~z2r!S A

z2z1
1

B

z2z2
D , ~9!

where the coefficientsA and B can then be determined b
condition ~ii !. Now the matricesj(`) and j(2r) can be
computed from Eq.~7!, the scalar functionv from Eq. ~9!,
and finally the solution can be written as

Mx52cosf sechz, M y5tanhz, Mz5sinf sechz,
~10!

wherez(x,t)54r sinf (x2Vt)1a, V54r cosf, f5argz1,
and a is an integration constant. It describes a moving d
main wall with velocityV, width (u4r sinfu)21, and energy
E58r sinf. It include two limits: a Nee´l wall with maxi-
mum velocity 4r for f50, and Bloch wall with maximum
energy 8r for f5p/2.

IV. DOUBLE DOMAIN WALLS

More interesting solutions are double domain wa
which are found with four poles in the complex plane. The
are only two possible arrangements for four poles, as sh
in Figs. 1~b! and 1~d!.

The first case is achieved by allowing a pole off circ
uzu5r, say,z15reif, with r .r. Then symmetriesT1 andT2

demand that the three others be located atz25 z̄1 , z3

5(r2/r )eif, z45 z̄3. Following the procedure of ou
Riemann-Hilbert method, we find the solution for the case
four poles off circle

Mx5
2 sinf

D
@sinf sinhz1cosz21 f cosf coshz1sinz2#,

M y5
1

D
@cos~2f!1sinh2z12gsin2f sin2z2#,

Mz5
2 sinf

D
@cosf coshz1cosz22 f sinf sinhz1sinz2#,

~11!

where f 5(r 21r2)/(r 22r2), g54r2r 2/(r 22r2)2, and
17241
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D5cosh2z11g sin2f sin2z2 ,

z152~r 1r2/r !sinf ~x2V1t !1a1 ,

z252~r 2r2/r !cosf ~x2V2t !1a2 , ~12!

with V154@(r 41r4)/r (r 21r2)#cosf and V252(r 1r2/
r )@cos(2f)/cosf#. The two parametersa1 and a2 are inte-
gration constants.

The above solutions describe the bound states of do
domain walls. The two walls oscillate against each oth
while their center of mass moves with constant velocityV1.
The ratior /r tells how tightly the double walls are bounde
When the four poles are far off circle, i.e.,r /r@1, the
double domain walls are so tightly bounded together t
they can be viewed as one traveling solution whose shap
modulated by a spin wave with velocityV2. This is the rea-
son that this solution is called soliton solution historically11

As the four poles get closer to the circler /r→1 the oscilla-
tion of double domain walls begin to become obvious.
amplitude gets larger while its frequencyuV12V2u gets
smaller. The shapes of double domain walls are well k
except around collision time, which ist50 if constantsa1
anda2 are taken to be zero.

The other possible situation for four poles is shown
Fig. 1~d!, where the four poles are on the circleuzu5r. Let
two of them to be atz15reif1 andz35reif2, then the other
two are located atz25 z̄1 andz45 z̄3, as demanded by sym
metriesT1 andT2. We find the solution in this case

Mx5
1

D
@cosf2~cosf22cosf1!sinhz1

1cosf1~cosf12cosf2!sinhz2#,

M y5
1

D
@sin2f11sin2f22sinf1sinf2coshz1coshz2

1~12cosf1cosf2!~sinhz1sinhz221!#,

Mz5
1

D
@sinf2~cosf12cosf2!coshz1

1sinf1~cosf22cosf1!coshz2#, ~13!

where

D5~12cosf1cosf2!coshz1coshz2

2sinf1sinf2~11sinhz1sinhz2!,

z154r sinf1 ~x2V1t !1a1 ,

z254r sinf2 ~x2V2t !1a2 , ~14!

with V154r cosf1 andV254r cosf2, while a1 anda2 are
integration constants.

This solution depicts a pair of scattering domain wal
The scattering process is completely similar to the ela
collision of two balls with same mass. Before collision, th
move towards each other, one with velocityV1, the other
6-3
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BRIEF REPORTS PHYSICAL REVIEW B 65 172416
with V2. At the collision, they exchange velocities. Then th
move apart, one withV2, the other withV1.

As we have exhausted the situations for four poles,
have not exhausted all possible double domain wall soluti
of the Landau-Lifshitz equation. There is one more dou
domain wall solution corresponding to the case shown
Fig. 1~c!, where we have two poles of the second order.
this case, the two scattering matrices take the form

v15S 1
b11

z2z1
1

b12

~z2z1!2

0 1
D ,

v25S 1 0

b21

z2z2
1

b22

~z2z2!2
1D ~15!

and

j~z!5I 1~z2r!S A

z2z1
1

B

z2z2
1

C

~z2z1!2
1

D

~z2z2!2D .

~16!

Using our Riemann-Hilbert method with these matrices,
find the solution for the case of two poles of the second or

Mx5
2 sinf

D
@sinf sinhz11z2cosfcoshz1#,

M y5
1

D
@cos~2f!1sinh2z12z2

2sin2f#,

Mz5
2 sinf

D
@cosfcoshz12z2sinf sinhz1#, ~17!

where

D5cosh2z11z2
2sin2f,

z154r sinf ~x2V1t !1a1 ,
17241
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z254r cosf~x2V2t !1a2 , ~18!

with V154r cosf and V254r@cos(2f)/cosf#, while a1
anda2 are integration constants.

In this solution, the double domain walls also collid
head-on and then depart from each other forever. Howe
unlike the previous case, the relative velocities of the t
walls tend to zero at long times as 1/t. We call this solution
a marginally bound state of the domain walls. It can
worked out from Eq.~17! that the relative position betwee
the two walls isDX5(1/2r sinf)ln@u4(V12V2)sin(2f)ut#. It
means that the effective potential between the two w
separated domain walls decreases exponentially
2e28xrsin f. We note that this marginally bound state can
viewed as the limiting case of either a bound state or
unbound state. Taking eitherr→r in Eq. ~11! or f1→f2 in
Eq. ~13! reproduces the solution~17!.

V. CONCLUSION

These three solutions, the bound state, the unbound s
and the marginally bound state, are all possible double
main wall solutions. This claim is intuitively obvious from
physical point of view, and now it is also clear mathema
cally with the help of the Riemann-Hilbert method. All othe
pole distributions, besides the four cases shown in Fig
correspond to solutions of more than double domain wa
For example, two poles of third order give us a solution
triple domain walls which collide and depart from each oth
with diminishing velocities; a pair of poles on circle and fo
poles off circle produce a solution describing a single w
scattering with a double-wall bound state. In principle, t
Riemann-Hilbert method can give us all possible solutions
the Landau-Lifschitz equation, and all possible pole arran
ments in the complex plane give us all domain wall so
tions.
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