Graphene Plasmonics

Zheyu Fang,

Sukosin Thongrattanasiri (CSIC), Zheng Liu, Yumin Wang, Andie Schlather, Frank Koppens (ICFO), F. Javier García de Abajo (CSIC), Pulickel M. Ajayan, Peter Nordlander, and Naomi J. Halas

zhyfang@rice.edu SPIE Optics+Photonics, San Diego Aug 12-16, 2012

The plasmon life cycle

Graphene

A flat monolayer of carbon atoms tightly packed into a 2-dimensional honeycomb lattice

Castro Neto et. al, Rev. Mod. Phys. 2009

Das Sarma et. al, Rev. Mod. Phys. 2011

- High Mobility: 10000 cm²V⁻¹s⁻¹
- Zero band gap semiconductor
- Poor absorption in visible range
- Improve graphene device optical properties in visible and NIR
- Study graphene semi-metal properties in mid- or far- infrared

Outline

Graphene-antenna sandwich
photodetector

 Doping graphene with plasmonic hot electrons

- Graphene nanostructures
 - nanodisk
 - nanoring

Graphene Photodetector

E.J.Lee et.al. *Nature Nano.*,**3**, 488 (2008)

F.Xia et.al. Nano Lett.,9,1039 (2009)

X. Duan et.al. *Nature Comm.*,**2**, 579 (2011)

E.J.Lee et.al. Nature Comm., 2, 458 (2011)

Transfer a graphene monolayer onto a SiO₂/Si substrate

Deposit the source-drain electrodes on the graphene

Fabricate heptamer array using two-step E-beam lithography

Transfer a second graphene monolayer onto the structure to form a sandwich device

Sandwich Device Characterization

Optical image of the device

Dimer

Heptamer Nonamer

Second graphene on the top is used to capture the hot electrons from the whole *k*-space !

Raman mapping

Photocurrent Detection

Simulated Absorption Cross Section

Strong Electric-field Enhancement

Polarization Dependence

By choosing a different geometry, we can make either polarization dependent or independent photodectector

Gate Voltage Control

By tuning the gate voltage from -40 to +40 V, we can actively control the photocurrent

Gate Voltage Control

Source Electrode

Surface Potential Diagram

Selective Resonance Detection

- Realize the tuning of resonance wavelength from visible to NIR
- Have a good agreement between the simulation and experiment

Internal Quantum Efficiency

Summary: graphene photodetector

Sandwich photodetector:

Fabricate antenna between two monolayer graphene, maximize signal from the whole *k*-space

Enhancement:

800% photocurrent enhancement, 20% internal quantum efficiency!

Controllable: polarization, size, resonance frequency (visible to near infrared), gate voltage tuning

Outline

Graphene-antenna sandwich
photodetector

 Doping graphene with plasmonic hot electrons

- Graphene nanostructures
 - nanodisk
 - nanoring

Nonamer

Hole doping graphene

p-type doping graphene with quantum dots

Hole injection!

Can we realize *n*-type doping graphene by plasmonic hot electrons?

F. Koppens et.al. Nature Nano. 7,363 (2012)

Graphene-Antenna Device

<u>SEM</u> image for the nonamer fabricated on graphene using E-beam lithography

Electrical Transport Characteristic

at a source-drain bias of 1 mV Inset: *I-V* plots for various gate voltages V_G from 0 to 60V

Dirac point shift with absorption

• Electrical transport characteristic ($I-V_G$ curves) of the nonamer antennagraphene phototransistor

Dirac point shift with absorption

The recorded Dirac point shift $\Delta V = |V - V'|$ is proportional to the nonamer absorption cross-section $\Delta V \propto \sigma_{abs}$

$$E_F = \hbar v_F \sqrt{\pi C_g (V_g - V_D) / eA}$$

Dirac point shift with absorption

- Dependence of E_F with photogenerated carrier density change
- Dependence of Source-drain current on photogenerated E_F change

Z. Fang, F. Koppens, et. al. ACS Nano

Antenna size control

Constant laser wavelength (785 nm) and power 14 **Disk Diameter** 100 ----- 230 nm Absorption Cross-section (a.u.) 12 -- 190 nm Source Drain Current (nA) 170 nm 80 Without Lase 10 -∆ V(V) 60 8-40 6 20 Dirac point shift 240 160 200 260 10 20 30 40 50 180 220 280 60 Gate Voltage (V) Disk Size (nm)

- *I-V_G* curves for different sized nonamer array
- Dirac point shift data and the fitting curve simulated from structure absorption

Hot electron recombination and scattering

Scattering Process

Recombination:

The internal electrostatic field drives a portion of the electrons back to the antenna

Scattering:

Injected hot electrons with the excessive electrons in graphene induced by Coloumbic interactions

Doping timescale:

estimated as 10^{-6} s for the case $\Delta V = 4V$ (under 5 µW incident laser power)

Z. Fang, F. Koppens, et. al. ACS Nano

Optical Induced Circuitry

Optical Induced graphene *p-n* junction

Optical Induced graphene *n-p-n* transistor

Summery: hot electron doping graphene

Plasmonic hot electron doping graphene:

Different incident laser, antenna size, and incident laser power

Nonlinear saturating trend:

Hot electron recombination in Au antenna, and electron scattering in graphene

Time scale:

Hot electron doping $(10^{-6} s)$ is much faster then *p*-type doping by using quantum dots

Optical Induced Circuitry:

p-n junction;

n-p-n transistor

Outline

 Antenna-enhanced graphene sandwich photodetector

Plasmonic hot electrons doping graphene

- Graphene Nanostructures
 - nanodisk
 - nanoring

Graphene nanodisk: plasmonic dipolar mode

$$\alpha(\omega) = \frac{3c^3}{4\omega^3} \frac{\kappa_r}{\omega_p - \omega - i\kappa/2}$$
$$\sigma^{\text{ext}}(\omega) = \frac{4\pi\omega}{c} \operatorname{Im}\{\alpha\} \approx \frac{3\lambda^2}{2\pi} \frac{\kappa_r}{\kappa}, \qquad \kappa_r \ll \kappa$$

Device Schematic

Start with SiO₂ substrate

Deposit ITO layer

Transfer Graphene Monolayer

Pattern graphene with nanodisk array

Spin-coating lon gel

Graphene Nanodisk (D=50 nm) and Nanohole Array

Graphene Nanodisks

Graphene Nanoholes

Center to center distance: 120 nm SiO_2 thickness: 285 nm ITO thickness: 50 nm Ion gel thickness: 100 nm

Center to center distance: 250 nm

We can see the graphene wrinkle

Z. Fang, S. Thongrattanasiri, J. Garcia de Abajo, et. al. In preparation

Graphene nanodisk plasmon dipolar mode

Z. Fang, S. Thongrattanasiri, J. Garcia de Abajo, et. al. In preparation

Graphene nanodisk size control

Detected by using FTIR: Normal incidence

SiO2 thickness: 285 nm Ion gel thickness: 100 nm Graphene disk diameter: 50 to 190 nm

Z. Fang, S. Thongrattanasiri, J. Garcia de Abajo, et. al. In preparation

Extinction (a.u.)

Plasmon hybridization for metallic nanorings

E. Prodan, et al, Science, 419, 2003

Theoretical Prediction

S. Thongrattanasiri, J. Garcia de Abajo, Calculation

Graphene Nanoring Structure

Conclusion

- Graphene-antenna photodetector
 - Sandwich structure
 - high enhancement in visible and NIR
 - High controllable device
- Plasmonic hot electrons doping graphene
 - Incident laser wavelength, power, antenna size
 - Hot electron recombination and further scattering
 - Doping time scale (10 μs)
- Graphene nanostructure
 - Nanodisk plasmonic dipoler resonance
 - Tuning with disk size and Fermi energy
 - Nanoring plasmonic bonding and anti-bonding modes

