Lecture 40

Now if the field is stationary, so that the autocorrelation is independent of time origin, it must be
of the form
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Thus measurement of the field autocorrelation, which is what the Michelson fringe pattern gives
directly, yields the power spectrum by Fourier transform. Conversely, if you know the spectrum,
then the field autocorrelation is determined.
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Fringe visibility

(i More generally , 7/(1’) is of the form

‘7/(1’)‘ COS w,7 ,i.e. a damped oscillatory
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V = ‘}/(2')‘ The coherence function is just the fringe visibility!
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‘7(T)‘ =1=> complete coherence

‘]/(2')‘ =0 = complete incoherence

0< ‘}/(T)‘ < 1= partial coherence
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An autocorrelation (suitably time-averaged) is also intuitively just a measure of how well you
can predict the value of the field at one time t+ 17 given the field at t. Complete coherence
means you can predict it with certainty. Partial coherence means that there is some correlation
between the fields at two different times, but the correlation is not perfect; there may have born
some phase shifts or amplitude fluctuations in between.

The time over which a field is strongly coherent with itself, i.e. where the autocorrelation has
significant amplitude, is called the_coherence time.
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The quantity |, =cz_,, is often called the (longitudinal) coherence length.

The quantitative characterization of the coherence time is a little bit arbitrary .There are two
principal ways of defining the coherence time in the literature.

D) Given F(T)=<E*(t)E(t+r)>
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The coherence time may be defined as the root mean square width of|F| :
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Similarly, the effective spectral width of the light may be defined as
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Where
TUSZ (v)do
v=L = mean frequency
[S(v) do
0

And S(v) is the spectral density vs. freq. v = 22 .
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It is possible to show using standard theorems on Fourier transform relations (see Mandel +Wolf

1
P4.3.3) that these satisfy 7 -Av > 4— .
T

Equality is obtained only if the spectrum is a Gaussian. This definition of the coherence time is
useful generally when the light is quasi-monochromatic and the spectrum has a “reasonably
well-defined peak”

(i) Another common definition is to use the normalized degree of coherence

(o) r(s) _ (E"()E(t+7))
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And define the coherence time as
r, = [|(e) dr
It turr:out (see Mandel +Wolf 4.3.3 for proof) that the width can be written as
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It should be noted that the above two definitions of the coherence time give roughly similar
numbers for quasi-monochromatic light, but can give significantly different result for complicated,




broad-band light .

Spatial Coherence
The idea of spatial coherence of a light wave is closely analogous to the concept of temporal

coherence. The fundamental issue is: at a frozen instant in time, given a field at one point in space,
how well can you predict what it will be in another point in space?

Example: complete spatial coherence

Consider emission from a point source (which may emit light with a randomly fluctuating

),

Clearly, F’1 and P2 are on the same wavefront, so there is complete spatial coherence
Even if S is temporally incoherent : - ) * b‘
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Example: complete spatial incoherence

Consider emission from an extended source of dipoles which oscillate ## random phases

between these two points.

and/or amplitudes (uncorrelated dipoles )

- Look at the wave near the source
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Clearly there is no correlation between the waves at P, and P, =>complete incoherence.



Note that, just as we did for the case of temporal coherence, we phrase the question of spatial
coherence in terms of the preserve(or observe) of correlations between fields, which can be
quantified by the means of correlation functions.

We thus extend the definition of I" to:
(.5, 7)=(E" (R, t)E(F,t+7))
(again, for stationary fields this is independent of t.)

I'(T,,T,,7) = mutual coherence function.

Similarly, we can extend 7(z) to
r T): 1—‘(FZI.’rZ’T)
P65, 0)0 (5, 7,.0)

Clearly, temporal and spatial coherence are connected by propagation, but we can consider spatial
coherence to be measured by

I'(f,5,,0) or7(F,T,,0).

77( ="complex degree of coherence “

Note that in general 0 < |}7| <1, 0= complete incoherence, and 1= complete coherence.

Now, it might seem, given our picture on the previous page, that spatial coherence is always
negligible when the source is extended and consists of a large number of uncorrelated dipole
emitters. Life turns out to be more interesting than that, however.

Surprise: the spatial coherence of light increases with propagation.

A very naive argument can make this statement at least sound plausible: “ at a large enough
distance, any source looks like a point source!”

ﬁga} e
P o

T

Py

At P, and P,, the multiple sources clearly give rise to_temporal incoherence, but since all the

waves look like spherical waves centered on S (which looks negligibly small), the wave has
acquired spatial coherence!

A somewhat more sophisticated argument is given in Mandel +Wolf P 4.2.2. Consider the

emission from two uncorrelated point sources S and S,, and look at the net field at two



observation points P, and P,.
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It |R,—Ry|<cz,, then

E, (t)=E(t)e"™ (¢ =0 if they are on the same wave front )
Similarly |R21 - R22| <cr,=E, (t)=E, (t)ei¢2

(the phases ¢ are just fixed by geometry — the positions of P, and P, - and are not fluctuating

variables).(¢, =|R,; —Ry,|-k)
E(R)=E()+E(Y
E(R)=E/(1)+E, (1) = E (1) +E,(t)e"

S, and S, uncorrelated => E, and E, uncorrelated

(E/(1)E,(1))=0
However, the total fields at ;, and P, are correlated, since the sum of the two waves at each point

looks nearly the same.
T(R,P,,0)= <[E1* +E, |[E€* +Ee* |

:<E1*E1e‘“‘1>+<E2*Ezei"’2> <+— NOT =0!
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Because spatial coherence arises from extended sources on propagation, it is intimately connected
with the theory of diffraction. The propagation of spatial correlations is described by the Van
Cittert- Zernike theorem. We don’t have the tools yet to develop this theory any further, but we
can gain considerable insight with a simple calculation.




Q: how to measure spatial coherence?
A: just like we did with temporal coherence — with an interferometer.

Of course, if we want to measure spatial correlations, we should use an interferometer which
divides a wavefront at different points in space .This is just what Young’s double-slit arrangement
does.

- Recall plane wave normally incident on a double slit :
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- Zero-order maximumat y =0 (6=0)
- First-order maximum when OPD= A
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(position on screen: tand =@ = B = y=D0= DF )
Now consider a plane wave incident at an angle ¢ :
x
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There is now a phase difference & =——hsin¢ between the two slits, so the zero-order max.
C

now occurs when

—hsing+hsin@d=0 or 0=+¢



1 order : —h¢+h9=,1:>9=%+¢

Note that the maxima of the tilted fringe pattern exactly overlap the_minima of the ¢ =0

(normal) fringe pattern when
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When this occurs, the interference pattern disappears!

S, =>fringe pattern centered on P,

S, =>fringe pattern centered on P,

= % = pattern disappears

by L
Geometry: tang=¢ = Y = PrY

= Pattern disappears when the source size is equal or larger than

2 _[1R_

L=2Rg=2R-2 = L
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There are other ways of phrasing this which are perhaps more general:

A
(i) o= i% => fringes disappear => no spatial coherence at the two slits

= Source is coherent if it subtends an angle smaller than A = F



(i) The converse of this is perhaps even more useful. If the source subtends an angle A¢, then

the_transverse coherence length is given by
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-

l,=h

\ (“coherence area ~ |t2)

Since this is the slit separation at which the interference pattern would disappear, where we

consider h now to be a variable.

Note as Agp — 0, source looks more +more like a point source, and the transverse coherence

length becomes very large, as expected.
This is the main result of our discussion.

Stellar Interferometer

Michelson realized that the above relation could be used to measure the angular size of stars. The
fundamental idea is to vary h, the distance between two sampled points on the wavefronts, and
see at what value of h to the fringe disappear.

The naive approach would be to just use Young’s arrangement; the problem is that, for large h,
the fringe spacing would get too small ,and the amount of light near the zero order would also be

too small.

Michalson’s trick: build an interferometer with a fixed slit * separation h2 (*or pinhole),

But which can sample a wavefront with separation h = h1

- Fringe spacing determined by h2

- Fringe contrast determined by h1



- See Guenther for derivation of the intensity on the screen:
. X
I, ~2l, 2—kh1A¢S|n(khZB)

Ex, star Betelgeuse (red giant in Orion)

A¢ ~0.047 sec. of arc

corresponds to h, on order of 2.5m

-
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Fig. 10.1 Schematic diagram of the experimental arrangement.
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OPTICAL FIE OBSERVATION PLANE (x)

with the diffraction pattern of a circular aperture. We assume that by the use of a
microdensitometer we show that it has the form [see Eq. (2.19)]:

‘ 2J,(x)
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(10.3)

where x is a normalized radial coordinate. We can, therefore, conclude that:

1. The amplitude distribution across the aperture P, is uniform.

2. The radiation across the aperture is essentially coherent.

The second aperture, P,, alone gives a similar result. Now when the two
apertures are opened together at their closest separation, two-beam interference
fringesare observed that are formed by the division of the incident wavefront by
the two apertures. At this closest separation, the fringes are extremely sharp [see
Fig. 10.2(a)]. As the separation of the apertures increases, the photographic
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Fig. 10.3 Intensity plots of typical results of Fig. 10.2.

record looks like the results shown in Figs. 10.2(a) through (o). The fringes
essentially disappear at (f) only to reappear faintly in (g) through (1), only to fade
againat(m), and reappear very faintly at (n) and (o). Intensity plots correspond-
ing to a typical sample of these photographic records are shown in Fig. 10.3.
From the results of Fig. 10.2, the following facts are recorded. As the separation
of P, and P, increases,

L. the fringe spacing decreases,

2. the minima are never zero,

3. therelative heights of the maxima above the minima steadily decrease until (f)
where they start to increase,

4. the absolute heights of the maxima decrease and the heights of the minima
increase until (f),

5. eventually the fringes disappear, at which point the resultant intensity is just
twice the intensity observed with one aperture alone, and

6. the fringes reappear with increasing separation but the fringes contain a
central minimum not a central maximum.

Items | through 5 may be summarized by defining a visibility ¥ [first intro-
duced by Michelson for this very purpose and previously introduced in Chapter 7
as Eq. (7.2)]:

Dnax = Inin
y = max _ ‘min (10.4)
‘{m + !mr'n

If this visibility function is plotted against the separation of the apertures P, and

P, for the example given in Fig. 10.2, a curve similar to that shown in Fig. 10.4




