表面等离激元的共振模式和波前调控研究

北京大学物理学院 人工微结构和介观物理国家重点实验室 E-mail: jszhang@pku.edu.cn

合作者:北京大学物理学院电镜室

俞大鹏教授

徐军高级工程师

朱新利博士生

本组研究生:

在读: 王家园、赵乘龙、张伟伟 毕业: 杨景、吴晓飞、王立升

一. 表面等离激元基础

- 二. 表面等离激元纳米腔模式
- 三. 光学天线中的场增强和模式
- 四. 表面等离激元的波前调控
- 五. 总结

1. 电子学器件和光学器件的比较

电子学器件

□ 器件的速度-尺度关系

2. 什么是表面等离激元

表面等离激元【Surface plasmon polariton (SPP) or surface plasmon (SP)】: 金属-介质界面上的电磁场模式: $\varepsilon_d \varepsilon_m < 0 \quad \varepsilon_d + \varepsilon_m < 0$

3. SPP的激发方法

光栅激发

近场探针激发

4. SPP的特点

□ 二维平面上的波

- □ 与光之间可以互相转换
- □ 色散关系可以通过结构调控
- □ 局域场增强
- □ 光学波段的磁相应
- □ 金属波导

口 二维平面上的波

Kitson et al., Phys. Rev. Lett. 77, 2670 (1996)

口 SPP与光之间互相转换

牛眼型结构超透射

Ebbesen et al., Science 297, 820 (2002)

口 色散关系可以通过结构调控

实验结果: T = 3nm, λ₀ = 651nm 获得 λ_{SPP} = 51nm

沿z方向传播的TM模式 MIM波导色散关系 Miyazaki et al., Phys. Rev. Lett. 96, 097401 (2006)

利用结构调控色散关系可以获得超短波长

Tip-enhanced Raman spectroscopy of a single-walled carbon nanotube

Anderson et al., Nano Lett. 7, 577–582 (2007)

口 光学波段的磁响应

Valentine et al., Nature 455, 376-379 (2008)

口 金属波导 —— 光、电信号共同的载体

Nature 440, 508 (2006)

5、表面等离激元的探测方法

(1) 泄露辐射显微镜

(2) 扫描近场光学显微镜

(3) 荧光成像

(4) 阴极荧光显微镜

原理:将SPP转化为自由空间传播的光

(1) 泄露辐射显微镜

泄露辐射显微镜实验装置

□ 泄漏辐射显微镜信号与SPP分量的关系

通常人们笼统地认为:泄漏辐射显微镜信号正比于SPP强度。

入射光:x偏振平面波

两个光栅激发的SPP各分量关系: **E**_x同相; **E**_y和**E**_z反相 目的: |**E**_x+**E**_y|²和|**E**_z|²分布不同→ 调制度不同

α = 60° 实验结果

Jiayuan Wang et al., **Opt. Lett.** 35, 1944 (2010)

(2) 扫描近场光学显微镜

 $\lambda = 633 \text{ nm},$ 53 nm thick silver film (scan range 40x40 µm).

(3) 荧光成像

(4) 阴极荧光显微镜

方法:将Si和PMMA的表面复制到金属结构上

h = 700 nm

h = 300 nm

Xinli Zhu et al., **Advanced Materials**, Published online.

口 圆形SPP纳米腔

d

 $M_{1,0}$

M_{0,0}

Hofmann et al., Nano Lett. 7, 3612 (2007)

口 回音壁形SPP纳米腔

Vesseur et al., Nano Lett. 9, 3147 (2009)

口 MIM结构SPP纳米腔

Kuttge et al., Nano Lett. 10, 1537 (2010)

1、正方形纳米腔中的模式

正方形腔的电镜照片

正方形纳米腔的共振条件:

$$L+2\delta(\lambda_{SPP}) = \sqrt{m^2 + n^2} \cdot \frac{\lambda_{SPP}}{2}$$

穿透深度

 $\delta(\lambda_{SPP}) = 0$ 近似下的模体积 : $V = \lambda_{SPP}^3 \left(1 + |\varepsilon_m|\right) \left(32\pi \sqrt{|\varepsilon_m|}\right)^{-1}$

320 nm边长的腔: V = 0.035 λ³_{SPP} = 0.0049 μm³

边长	350nm	350nm
模式	(1, 1)	(1, 1)
反射器高度	300nm	500nm
 共振波长	577nm	655nm

X. L. Zhu et al., **Phys. Rev. Lett.** 105, 127402 (2010).

2、三角形纳米腔中的模式

三角形腔的电镜照片

Xinli Zhu et al., Advanced Materials, published online.

三、光学天线中的场增强和模式

无线电天线

光学天线

天线样品

Muhlschlegel et al., Science 308, 1607 (2005).

Muskens et al., Nano Lett. 7, 2871 (2007).

Curto et al., Science 329, 930 (2010).

1、V形光学天线中的模式和场增强

V形领结天线电场振幅增强因子

Jing Yang et al., Opt. Express 15, 16852 (2007).

2、三明治结构光学天线中的模式和场增强

三明治结构光学天线中的能级劈裂

共振时的电流

Lisheng Wang et al., Opt. Commun. 281, 5444 (2008).

3、利用MIM结构纳米棒中的共振实现亚波长成像

两种SPP共振波导

四、表面等离激元的波前调控

前人的方法:在金属膜上利 用散射结构调控SPP强度 缺点:调控精度差、

不能直接调控相位

Feng et al., Appl. Phys. Lett. 91, 081101 (2007)

SPP的波前调控方法

我们的思想:

优点:

✓ 高精度;

利用耦合栅位置和结构的变化,实现 光与SPP耦合的同时对SPP波前精确调控。 位置 —— 相对相位 , 结构 —— 强度

1. 三维光和二维SPP间的成像

Jiayuan Wang et al., Appl. Phys. Lett. 94, 081116 (2009).

口 成像特性

成	像元	「言	图
PN	211		

焦点半宽随焦距和NA的变化 焦点半宽随波长的变化

SPP激发耦合透镜:FWHM = $0.42\lambda_0/NA$

普通理想透镜:FWHM = $0.51\lambda_0$ /NA

分辨率提高的原因:SPP在垂直于金属膜分量的场增强

Jiayuan Wang et al., **Opt. Express** 18, 6686-6692 (2010)

2. SPP波分复用器

实验结果

介质为空气和水的比较

波导耦合实验结果

Chenglong Zhao & Jiasen Zhang, ACS Nano, published online.

□ SPP多焦点聚焦

5焦点聚焦实验结果

Appl. Phys. Lett. 94, 111105(2009)

□ SPP二元光学

□ SPP泰伯效应验证

SPP点源阵列

Opt. Express 17, 19757 (2009)

□ 不同波长SPP分束和聚焦

 $\lambda_1 = 809 \text{ nm}$

- □ 利用SPP的共振和场增强可望实现纳米尺度光子学 原型器件
- 光信息远距离传输仍然依赖于光纤,因此需要实现
 光纤和SPP器件之间的联接
- □ 微米尺度的SPP器件和集成更接近实用化

应用上需要解决的问题

- □ 传输损耗:SPP长程模式、有源介质产生增益
- □ SPP纳米源: SPP纳米激光器、硅基SPP纳米源
- □ 原型器件的实现:无源和有源器件
- □ 器件的集成
- □ 与传统光集成器件的联接和兼容

