Lecture 32

Paraxial Wave Egn. and Gaussian Beams

Recall from Maxwell’s equations we obtained for a time-harmonic wave of freq. @ the

Helmholtz eqn. in free space
(V2 + k2) E(x,y,2)=0
Where E= (complex) field amplitude of any polarization component of the vector electric field

k=2
C

Let us consider waves that are propagating principally along the z-axis:

E(x,y,2) =B (xy,2)e™

v describes complex transverse profile, and its variation with propagation.

Plug into Helmholtz:
VE =[(Vy)e™ - (iky,)e™ |E
V’E = [(vzl//)e*‘kz —2iki(Vy)e ™ - kzwe’"‘zJ E,
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Vi+k?)E =E,{Viy -2ik—te™ =0
(V2 +Kk?) 0{ v -2k — }e

Just as we did for ray optics, we will look for paraxial waves.
= Wave is qualitatively of form
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Paraxial approximation:
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=" paraxial wave equation”

Note that this paraxial approximation is equivalent to our earlier, geometrical optics paraxial
approximation.

- Rays =1 to wavefronts => propagation essentially along z=>Sin @ = @

- see Siegman pp.628-630: he shows there that the paraxial approximation is valid essentially
when @ < 0.5rad <> 30°.

Let’s consider a “paraxial wave” more quantitatively now. First consider the spherical wave,
which is an exact solution to the Helmholz equation.

—ikr
E(F) = AS

Now consider the region of this wave propagating along z

r=yx’+y’+R?

2, 2
X"+
In the plane I = /X + Yy + 2° :Z{l+—2y} , we have
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Paraxial approximation again: consider the region near the z axis, so that

X +y> <1z’ < Equivalent to |tan 6’| <1



Where we have neglected (X2 + yz)/ 7% inthe denominator, since it’s just a tiny change in the

amplitude, but we kept the first-order correction term in the phase in the exponential, since even
a small charge in the exponent can change the phase noticeably.

The approximation is often called the Fresnel approximation

At z=R, we have

This is sometimes called a paraboloidal wave. It’s almost a spherical wave, but has a phase that
varies quadratically in the transverse direction.

Theorem: The paraboloidal wave obtained by making the Fresnel approximation is an exact
analytic solution to the paraxial wave equation.

Proof
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Plug in wave eqgn.:

. 2 .
VfW—Zik%—f:—i:w—tT(x2+yZ)W—Zik[—%+2l—:2(x2+y2)}W:Q exactly
g.e.d.
Therefore, within the paraxial approximation, near the z axis we have, up to an arbitrary
amplitude,
E B _ikz 1 cik(eey?)ez
(X y,2)=w(xYy,2)e™™ where w_;e

Note that the phase of the paraboloidal wave is

£x2+y2_£x2+y2
Az A R

#(xy.2)=

Which emphasizes that z=R is the radius of curvature of the phase front.




Note also that the choice of origin of our coordinate system must be arbitrary. A wave that

satisfies the wave equation in one coordinate system must also be a solution in a displaced

coordinate system!

Therefore, the paraboloidal wave solution could just as well be written

1 e—ik(x2+y2)/2(x—y): 1 -ik(x+y?)2re2)
z2-¢ R(z)

*p(xy2)=

Where R(z) =z—¢ ,and { is some arbitrary new origin.

Mathematically, this expression would also be a valid analytic solution to the paraxial wave

equation even if ¢ were complex —afterall, ¢ is justa number!

= Write § = iZR , and see what happens!

The complex wave amplitude becomes
1 e—ik(x2+y2)/2(z+izR)
Z+iz,

v(x.y.2)=

Comparing with our earlier expression(*) above , we see that we could define

q(z) =z +iz,

As the “complex radius of curvature” of the beam.

Of course, since q is complex, it would be best to separate our the real and imaginary parts in the
exponent to get the phase and amplitude separately .Noting that q is in the denominator, we

write

1 e—ik(x2+y2>/2qi e—ik(><2+y2)/2qr

q looks like looks like our original
a Gaussian paraboliodal wave

The Gaussian amplitude envelope has the advantage over the parabolodal wave that a_finite

amount of energy is confined near the z axis.

In order to put the Gaussian in a more common form, and to emphasize the similarity of the

phase factor with that of the paraboloidal wave, it is useful to write

1 1 . 2

4(2) R(z) =w(2)




So that

—(x2+y2)/W2(z) —ik(x2+y2)/2R(z)

AETE)

R(z) = (z-dependent) radius of curvature

W(Z) =spot size (extent of beam transverse to direction of propagation)

The above eqn. describes the “lowest order” (we’ll see why) Gaussian beam solution to the
paraxial wave eqn.

Standard form of Gaussian beam:

- Atorigin, beam has spot size W, and phase front radius R=w
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After propagation from origin to position z,

E(x, y,Z):EO\/z Y% e‘ikz—ik(xz+y2)/2q(z)

Ve a)oq(z)
5 a-ikerig(z Y, o
— Eo ge—()e—(x +y )/W (z)e—lk(x +y )/2R(z)
T

w(z)

normalized Gaussian

The beam parameters can be written

<— z-dep. Spot size




2
Z

R(2)=z- 1+(—Rj < z-dep. Radius of curvature
YA

VA
#(2) = tan™ (—j < "excess” phase delay (Goose effect)
Zg

It is important of reiterate that W, and Z_ are not independent parameters. They are related

W
by ZR = TO

Thus a Gaussian beam is completely determined by either W, orZ; ,and A

W, = spot size at focus =>often called the beam waist

Physical meaning of Z, :

- When Z=17p,

= Beam has expanded by \/E (as measured by

the % point on the field )

= Zp is a measure of how far the beam is
collimated before its divergence due to diffraction becomes significant

- Z, is called the Rayleigh range

- Also common nomenclature: b= 22R =confocal parameter




