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Vlasov equation of plasma in magnetic field
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Abstract. The linearized Vlasov equation for a plasma system in a constant external magnetic
field and the corresponding linear Vlasov operator are studied. The solution of the Vlasov equation
is found by the resolvent method. The spectrum and eigenfunctions of the Vlasov operator are also
found. The spectrum of this operator consists of two parts: one is continuous and real; the other
is discrete and complex. Interestingly, the real eigenvalues are uncountably infinitely degenerate,
which causes difficulty in solving this initial value problem by using the conventional eigenfunction
expansion method. It also breaks the natural relation between the eigenfunctions and the resolvent
solution in which the eigenfunctions can normally be considered as the coefficients of e−iωt in the
Laplace (or resolvent) solution.

1. Introduction

In plasma physics, many interesting phenomena such as plasma oscillations, instabilities and
Landau dampings can be studied and understood through a very simple plasma model. In this
model, ions are assumed to be motionless and to form a positively charged background and the
collisions between electrons are neglected. In 1945, Vlasov proposed a nonlinear equation,
now known as the Vlasov equation, to describe this model [1]. Since then, much effort has
been devoted to the study of this equation. When there is no external field, one usual way of
treating this problem is to first linearize the equation by assuming the system is very close to the
equilibrium state, then reduce it to a one-dimensional equation. Many interesting phenomena
can be understood through this simple one-dimensional linearized Vlasov equation [2–4].

In this paper, I shall study this system in a constant external magnetic field. After the
Vlasov equation is linearized, two methods, the eigenfunction expansion method and the
resolvent method, are tried to solve the equation. The resolvent method is proved to be
successful. Surprisingly, the eigenfunction expansion method is not successful, even after all
the eigenfunctions of the corresponding linear operator, the Vlasov operator, have been worked
out. The difficulty is caused by the fact that the real eigenvalues are uncountably infinitely
degenerate.

The explicit relation between the Laplace transform (or the resolvent) approach and the
eigenfunction expansion approach to the one-dimensional Vlasov equation with no external
field was studied by Case [5] and Arthuret al [6]. In particular, the latter demonstrated how
to construct the van Kampen–Case modes [5, 7] through the resolvent solution. Their results
show that the van Kampen–Case modes are, loosely speaking, simply the coefficients of eiωt

in the resolvent (or Laplace) solution. This is no longer true when we do not reduce the
Vlasov equation to a one-dimensional problem or we simply cannot because of the existence
of external fields. The eigenmodes (or eigenfunctions) corresponding to the real eigenvalues
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presented in section 3 cannot be constructed with the resolvent solution in section 5, which is
caused by the infinite degeneracy mentioned above.

The plan of this paper is as follows. In section 2, the derivation of the linearized Vlasov
equations and their related linear Vlasov operators are sketched, primarily to introduce notation.
The eigenfunctions are presented and discussed in section 3 without detailed calculations.
Next, in section 4, the related adjoint problem is discussed briefly and the orthogonal relation
between the original eigenfunctions and the adjoint eigenfunctions is proved. In section 5, the
exact solution is given by using the resolvent method.

2. The Vlasov equations and Vlasov operators

This simple plasma model is described by the Vlasov equation

∂

∂t
ρ(Ex, Ev, t) = −Ev · ∂

∂ Ex ρ(Ex, Ev, t)−
EF
me
· ∂
∂ Ev ρ(Ex, Ev, t) (1)

whereρ(Ex, Ev, t) is the single distribution function of electrons andEF is the force felt by a
single electron. In this paper, the system is in a constant external magnetic fieldEB0, so

EF = −eEv × EB0 − e EE (2)

where

EE(Ex, t) = e ∂
∂ Ex
∫

dEx ′ dEv′ ρ(Ex
′, Ev′, t)
|Ex − Ex ′|

is the electric field at positionEx and timet generated by the electron system itself. If the system
is just slightly away from an equilibrium statef0(Ev)

ρ(Ex, Ev, t) = n0f0(Ev) + f (Ex, Ev, t) (3)

wheren0 is the average density andf � n0f0, then it can be described very well by the
linearized Vlasov equation, which is

∂f

∂t
= −Ev · ∂f

∂ Ex +
e

me
(Ev × EB0) · ∂f

∂ Ev +
e2n0

me

[
∂

∂ Ex
∫

dEx ′ dEv′ f

|Ex − Ex ′|
]
· ∂f0

∂ Ev . (4)

Taking the Fourier transform

f (Ex, Ev, t) =
∑
Ek 6=0

fEk(Ev, t)exp(iEk · Ex) (5)

for the Ek-component functionfEk(Ev, t) we have

i
∂

∂t
fEk(Ev, t) = Ek · EvfEk(Ev, t) + i

e

me
(Ev × EB0) · ∂

∂ Ev fEk(Ev, t)−
ω2
p

k2
Ek · ∂
∂ Ev f0(Ev)

∫
dEv′ fEk(Ev′, t)

(6)

whereωp = (4πe2n0/me)
1/2 is the plasma frequency. To simplify the notation, let us drop

the indexEk and let

η(Ev) = ω2
p

k2
Ek · ∂
∂ Ev f0(Ev) (7)

then equation (6) becomes

i
∂

∂t
f (Ev, t) = Ek · Evf (Ev, t) + i

e

me
(Ev × EB0) · ∂

∂ Ev f (Ev, t)− η(Ev)
∫

dEv′ f (Ev′, t). (8)



Vlasov equation of plasma in magnetic field 5837

This is the equation I shall study mostly in this paper. Consequently, the corresponding linear
Vlasov operatorK is defined as

Kf (Ev) = Ek · Evf (Ev) + i
e

me
(Ev × EB0) · ∂

∂ Ev f (Ev)− η(Ev)
∫

dEv′ f (Ev′). (9)

This is an integro-differential, unbounded and non-self-adjoint linear operator. In terms ofK,
equation (8) can be put into a compact form

i
∂

∂t
f (Ev, t) = Kf (Ev, t). (10)

The equation for the case whereEB0 = 0 is

i
∂

∂t
f (Ev, t) = K0f (Ev, t) (11)

with

K0f (Ev) = Ek · Evf (Ev)− η(Ev)
∫

dEv′ f (Ev′). (12)

Integrating over the two components ofEv perpendicular toEk, we can reduce (11) to a one-
dimensional problem

i
∂

∂t
f̄ (v, t) = K̄0f̄ (v, t) (13)

with

K̄0f̄ (v) = kvf̄ (v)− η̄(v)
∫ ∞
−∞

dv′ f̄ (v′). (14)

Herev is the component ofEv along the direction ofEk andk is the magnitude ofEk. The bar over
functions indicates that they have been integrated over the two components ofEv perpendicular
to Ek. This convention is followed throughout this paper. Equation (13) has been studied
thoroughly by van Kampen, Case and many others [2,5–8].

Formally, equations (10), (11) and (13) are just the same as the Schrödinger equation.
However, the Hamiltonian operator appearing in the Schrödinger equation is self-adjoint and
bounded from the below, whilēK0, K0 andK are unbounded and not self-adjoint. These are
all typical equations arising in linear evolution systems. There are many standard methods for
studying this class of linear equations. For example, equation (13) can be solved by the Laplace
transform [2,5], the resolvent method [6] and the eigenfunction expansion method [5,7]. I shall
try to use the eigenfunction expansion method and the resolvent method to solve equations
(10) and (11).

3. Eigenfunctions and eigenvalues

In this section, I shall present the eigenfunctions and spectra of operatorsK̄0, K0 andK.
These three operators are similar in many respects as they are supposed to be. Their spectra
are the same: continuous real eigenvalues, discrete real eigenvalues and discrete complex
eigenvalues. Since the existence of discrete real eigenvalues depends on the choice of the
equilibrium functionf0(Ev), I shall only consider, for simplicity, the case where the discrete
real eigenvalues do not exist. Also, their eigenfunctions are similar: most of them are singular
containingδ functions. However, there is one major difference: the real eigenvalues ofK0

andK are infinitely degenerate, while the eigenvalues ofK̄0 are not degenerate. This infinite
degeneracy causes the difficulty in expanding the functions in terms of these eigenfunctions
and relating these eigenfunctions with the resolvent solutions.
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3.1. The operator̄K0

The eigenfunctions of̄K0 were first constructed by van Kampen [7] and then completed by
Case [5], and are now widely known as van Kampen–Case modes. Their results can be
summarized as follows.

The eigenequation for the eigenvaluez is

K̄0ḡz(v) = kvḡz(v)− η̄(v)
∫ ∞
−∞

dv′ ḡz(v′) = zḡz(v). (15)

It is linear, so the functions can be normalized as∫ ∞
−∞

dv ḡz(v) = 1. (16)

When the eigenvalue is real, say, it isν, the eigenfunction is

ḡν(v) = P η̄(v)

kv − ν + λ̄(v)δ(kv − ν). (17)

HereP means the principal value integral. The normalization condition (16) requires
1

k
λ̄(
ν

k
) = 1−

∫
dv P

η̄(v)

kv − ν . (18)

The discrete complex eigenvaluesνj (j = 1, 2, . . . , m0) are determined by

ε0(z) = 1−
∫ ∞
−∞

dv
η̄(v)

kv − z = 1−
∫

dEv η(Ev)
Ek · Ev − z = 0. (19)

The corresponding eigenfunction is

gj (v) = gνj (v) =
η̄(v)

kv − νj (20)

which satisfies the normalization condition (16). the eigenfunctions (17) and (20) are the
famous van Kampen–Case modes. It is clear that all the eigenvalues ofK̄0 are not degenerate
when the van Kampen–Case modes are normalized according to (16).

3.2. The operatorK0

The eigenequation here is

K0gz(Ev) = Ek · Evgz(Ev)− η(Ev)
∫

dEv′ gz(Ev′) = zgz(Ev). (21)

As this operator is linear, we set the normalization condition∫
dEv gz(Ev) = 1. (22)

The eigenfunction corresponding to a real eigenvalueν is

gν(Ev) = P η(Ev)
Ek · Ev − ν + λ(Ev)δ(Ek · Ev − ν). (23)

The normalization condition (22) requires thatλ(Ev) satisfy∫
dEv λ(Ev)δ(Ek · Ev − ν) = 1−

∫
dEv P η(Ev)
Ek · Ev − ν . (24)

It is very clear here that there are infinitely many choices forλ(Ev) to satisfy the above condition.
For example, all the functionsλ(Ev) = α(v1, v2)λ̄(v) satisfy (24) as long as∫ ∞

−∞
dv1

∫ ∞
−∞

dv2 α(v1, v2) = 1 (25)
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wherev1 andv2 are the two components ofEv perpendicular toEk. Obviously, the choices
of α(v1, v2) are uncountably infinite, which means there are infinitely many corresponding
eigenfunctions for any real eigenvalueν. In other words, the degeneracy of every real
eigenvalue is uncountably infinite.

The complex eigenvalues ofK0 are the same as̄K0, νj (j = 1, 2, . . . , m0), the zeros of
ε0(z), whose corresponding eigenfunctions are

gj (Ev) = gνj (Ev) =
η(Ev)
Ek · Ev − νj

. (26)

3.3. The operatorK

In this case I shall present the results directly without going into the detailed calculations. The
method of computing eigenfunctions is very similar to that given in the appendix. First, let us
set up a coordinate system and introduce some notation:

EB0 = B0ẑ Ek = k⊥x̂ + k‖ẑ (27)

Ev = v⊥ cosθx̂ + v⊥ sinθŷ + v‖ẑ. (28)

Thus the operatorK becomes

Kf (Ev) = (k⊥v⊥ cosθ + k‖v‖)f (Ev)− iω0
∂

∂θ
f (Ev)− η(Ev)

∫
dEv′ f (Ev′) (29)

whereω0 = eB0/me is the cyclotron frequency. The same normalization condition∫
dEv Gz(Ev) = 1 (30)

is set for the eigenequation

KGz(Ev) = zGz(Ev). (31)

As the complex eigenvalues ofK0 are determined byε0(z) = 0, the complex eigenvalueszj
(j = 1, 2, . . . , m) of K are determined byε(z) = 0, where

ε(z) = 1 +π
∑
n

∫ ∞
0
v⊥ dv⊥

∫ ∞
−∞

dv‖
JnJn−1η⊥ + JnJn+1η⊥ + 2J 2

n η‖
2(z−mω0 − k‖v‖) . (32)

Here and after, all summations are assumed to be over all integers. TheJn are the Bessel
functionsJn(k⊥v⊥/ω0). Two functions,η⊥ andη‖, are defined as

η⊥ =
ω2
p

k2
k⊥

∂

∂v⊥
f0(Ev) η‖ =

ω2
p

k2
k‖

∂

∂v‖
f0(Ev). (33)

Note the equilibrium state functionf0(Ev) has been assumed to be a function ofv⊥ andv‖ only,
andm, the number of the discrete complex eigenvalues, can be infinite. The eigenfunction
corresponding tozj is

Gj(Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
n

e−inθ (Jn+1 + Jn−1)η⊥/2 +Jnη‖
zj − nω0 − k‖v‖ . (34)

For a real eigenvalueµ, we have

Gµ(Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
n

e−inθP
(Jn+1 + Jn−1)η⊥/2 +Jnη‖

µ− nω0 − k‖v‖

+
∑
n

an(v‖, v⊥) exp−i

(
k⊥v⊥ sinθ

ω0
− nθ

)
δ(µ− nω0 − k‖v‖) (35)
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where thean are arbitrary functions as long as they satisfy the only constraint, the normalization
condition (30). This means that there are infinitely many eigenfunctionsGµ(Ev) corresponding
to each real eigenvalueµ. The infinite degeneracy arises again. It is easy to check that all
these expressions reduce to those forEB0 = 0.

We see that there are many similarities amongK̄0, K0 andK. However, there is one
important difference: the real eigenvalues ofK̄0 are not degenerate, while the real eigenvalues
of bothK0 andK are uncountably infinitely degenerate. As shown by Case [5], the solution of
equation (13) can be expanded in terms of the van Kampen–Case modes. In other words, we
can use the eigenfunction expansion method to solve equation (13) just as we often do to solve
the Schr̈odinger equation. However, this method is not suitable for solving equations (10) and
(11), even though we know the eigenfunctions ofK0 andK. Due to the infinite degeneracy,
there is no obvious way that functions can be expanded in terms of these eigenfunctions. It
is a common belief that for an initial value problem of a linear evolution system, to finding
the solution is equivalent to find the eigenfunctions and spectrum of the linear operator in this
system. Seemingly, this is not the case forK0 andK.

4. Adjoint equations and operators

OperatorK is not self-adjoint, so it is interesting to know the functions orthogonal to its
eigenfunctions. For this purpose, we consider the adjoint equation to (10)

i
∂

∂t
f(Ev, t) = K̃f (Ev) (36)

where the linear operator̃K is defined as

K̃f (Ev) = Ek · Evf (Ev) + i
e

me
(Ev × EB0) · ∂

∂ Ev f (Ev)−
∫

dEv′ η(Ev′)f (Ev′). (37)

The discrete complex eigenvalues ofK̃ are also determined by equation (32). Its eigenfunction
corresponding tozj is

G̃j (Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
n

e−inθ Jn

zj − nω0 − k‖v‖ (38)

while its eigenfunction corresponding to a real eigenvalueµ is

G̃µ(Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
n

e−inθP
Jn

µ− nω0 − k‖v‖

+
∑
n

ãn(v‖, v⊥) exp−i

(
k⊥v⊥ sinθ

ω0
− nθ

)
δ(µ− nω0 − k‖v‖) (39)

where theãn are subject only to the normalization condition∫
dEv η(Ev)G̃µ(Ev) = 1. (40)

This means that the real eigenvalues ofK̃ are also infinitely degenerate. Therefore, we see
that the adjoint operator̃K has the same spectrum structure and similar eigenfunctions as the
original operatorK. By straightforward substitution, it can be proved that∫

dEv [K̃f (Ev)]∗g(Ev) =
∫

dEv f ∗(Ev)[Kg(Ev)] (41)
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where ‘∗’ represents the complex conjugate. This relation leads easily to the orthogonal relation
between the eigenfunctions ofK̃ andK:

(z∗ − z′)
∫

dEv G̃∗z(Ev)Gz′(Ev) = 0. (42)

One interesting point to note is that for the complex eigenvalues we have∫
dEv G̃∗zj (Ev)Gzj (Ev) = 0 (43)

sincez∗j 6= zj . The adjoint equation to (11) can be considered as a special case ofEB0 = 0;
thus no additional treatment is necessary.

5. The resolvent method

As has been pointed out in the previous sections, the conventional eigenfunction expansion
method is not suitable for solving equation (10). We therefore have to resort to other methods.
It turns out that the resolvent method is a successful choice, just as it is for the one-dimensional
equation (13) [6]. The resolvent ofK is defined as

R(z) = 1

z− K (44)

wherez is a complex variable. If the initial function isf (Ev, 0), then the function at timet is

f (Ev, t) = 1

2π i

∮
dz e−iztR(z)f (Ev, 0) (45)

where the integration contour surrounds all the singularities ofR(z). For most operators, how
their resolvents act on a function can be found only approximately. In this case, the explicit
form of resolvent can be found exactly (the detailed derivation is given in the appendix). It is

R(z)f (Ev, 0) = F(z, Ev)−G(z, Ev) 1

ε(z)

∫
dEv f (Ev, 0)G̃∗(z∗, Ev) (46)

where

G(z, Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
n

e−inθ (Jn+1 + Jn−1)η⊥/2 +Jnη‖
z− nω0 − k‖v‖

G̃(z, Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
n

e−inθ Jn

z− nω0 − k‖v‖

F(z, Ev) = exp

(
i
k⊥v⊥ sinθ

ω0

)∑
m,n

fmJne
−i(m+n)θ 1

z− (m + n)ω0 − k‖v‖
with

f (Ev, 0) =
∑
m

fm(v‖, v⊥)eimθ .

Similarly, for K̃ we have

1

z− K̃f (Ev, 0) = F(z, Ev)− G̃(z, Ev)
1

ε(z)

∫
dEv f (Ev, 0)G∗(z∗, Ev). (47)

As is well known, the singularities of the resolventR(z) give the spectrum ofK. It is not
hard to see from (46) that the singularities ofR(z) include the zeros ofε(z), the discrete real
poles,nω0 + k‖v‖, and a branch cut along the real axis. Therefore the spectrum ofK is just
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what we obtained earlier: all the real values and a set of discrete complex values determined
by ε(z) = 0. Let us write down the solution explicitly by choosing a specific contour:

f (Ev, t) = − 1

2π i

∫
C+

dz e−izt

{
F(z, Ev)−G(z, Ev) 1

ε(z)

∫
dEv f (Ev, 0)G̃∗(z∗, Ev)

}
+

1

2π i

∫
C−

dz e−izt

{
F(z, Ev)−G(z, Ev) 1

ε(z)

∫
dEv f (Ev, 0)G̃∗(z∗, Ev)

}
(48)

where theC± run parallel to the real axis and are chosen such that all the singularities ofK(z)
are enclosed between them. We can use the residue theorem to calculate the above integration.
If we are only interested in the solution fort > 0, then two large semi-circles can be attached
from below toC± to make two closed contoursO±. Since there are no singularities inside
the contourO− the second part of the integration (48) is identical to zero. In contrast,O+

encloses singularities: poles, such aszj , and a branch cut along the real axis. To get rid of
the troubling branch cut, we can replace the functions in the integrand with their plus analytic
continuations [3]. These plus continuations are identical to their original functions in the upper
complex half-plane but are different in the lower half-plane. They have no branch cuts but
have new poles that differ from the original poles in the lower half-plane. These new poles are
the mathematical origin of the Landau dampings [3,4] in this plasma model.

When EB0 = 0, equation (48) becomes

1

z− K0
f (Ev, 0) = f (Ev, 0)

z− Ek · Ev −
η(Ev)

z− Ek · Ev
1

ε0(z)

∫
dEv f (Ev, 0)
z− Ek · Ev . (49)

Therefore, the solution of equation (11) is

f (Ev, t) = − 1

2π i

∫
C+

dz e−izt

{
f (Ev, 0)
z− Ek · Ev −

η(Ev)
z− Ek · Ev

1

ε0(z)

∫
dEv f (Ev, 0)
z− Ek · Ev

}
+

1

2π i

∫
C−

dz e−izt

{
f (Ev, 0)
z− Ek · Ev −

η(Ev)
z− Ek · Ev

1

ε0(z)

∫
dEv f (Ev, 0)
z− Ek · Ev

}
. (50)

After the integration over the two components ofEv perpendicular toEk, the above equation can
be reduced to one-dimensional form:

f̄ (v, t) = − 1

2π i

∫
C+

dz e−izt

{
f̄ (v, 0)

z− kv −
η̄(v)

z− kv
1

ε0(z)

∫
dv
f̄ (v, 0)

z− kv
}

+
1

2π i

∫
C−

dz e−izt

{
f̄ (v, 0)

z− kv −
η̄(v)

z− kv
1

ε0(z)

∫
dv
f̄ (v, 0)

z− kv
}

(51)

which is the solution of equation (13).
It is important to note here that the eigenfunctionsḡz(v)of K̄0 can be constructed through its

resolvent solution (51). The method was demonstrated clearly in [6]: the contourC± is divided
into two parts, small circles surrounding the poles and two straight lines approaching to the real
axis from both above and below. The first part straightforwardly gives the eigenfunctionsḡi (v)

corresponding to the complex eigenvalues. The second part leads to the real eigenfunctions
ḡν(v). For the operatorsK0 andK, their complex eigenfunctionsgj (Ev) andGj(Ev) can easily be
constructed in a similar manner through their resolvent solutions (48) and (50), respectively.
However, straightforward calculation immediately demonstrates the technical difficulties in
constructing the real eigenfunctionsgµ(Ev) andGµ(Ev) from (48) and (50) in like manner. It is
not worth dwelling on the technical difficulties, which involve very complicated calculations
and formulae, since one may argue that there may be another method by which these difficulties
could be circumvented. Let us focus on the underlying reason, namely the uncountably infinite
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degeneracy. Usually, the eigenfunctions of a linear operator can be labelled exactly either by
a set of real numbers or integers or both. For the operatorsK0 andK, I still labelled their
eigenfunctions by real numbers and integers. However, the labelling is not exact since there are
an infinite number of eigenfunctions for each real number. It certainly requires the introduction
of non-trivial measure and other concepts in functional analysis to expand any function in the
vector space expanded by the eigenfunctionsgµ(Ev) or Gµ(Ev). All of this is unlikely to be
achieved by some clever algebraic manipulations with (48) and (50).

6. Conclusion

In summary, I have studied the linearized Vlasov equation of plasma in a constant external
magnetic fieldEB0 and found its exact solution by the resolvent method. The corresponding
linear Vlasov operatorK has also been discussed and its eigenfunctions found. The spectrum
of this unbounded operator has two parts: continuous real eigenvalues and discrete complex
eigenvalues. This is very similar to the spectrum ofK̄0, the one-dimensional linear operator
derived from the linearized Vlasov equation without external fields [5, 7]. However, there
is a striking new feature forK in that the real eigenvalues ofK are uncountably infinitely
degenerate. This new feature leads to the difficulty in expanding the functions in terms of the
eigenfunctions ofK.
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Appendix

In this appendix I give the detailed derivation leading to (46). The eigenfunctionsGj(Ev)
andGµ(Ev) can be found in a similar way. The method is called the integration along the
characteristic curves [9] or the integration along the ‘unperturbed orbits’ [4]. In the following
calculations, it is assumed that Imz > 0. To make the formulae compact, let us use the
notation:

F = (z− K)f (Ev) (A1)

E = exp(iEk · Ex − izt). (A2)

It is easy to verify with the aid of (9) that[
i
∂

∂t
+ iEv · ∂

∂ Ex − i
e

me
(Ev × EB0) · ∂

∂ Ev
]
(fE) = FE − Eη

∫
f (A3)

whereη = η(Ev), f = f (Ev) and the non-specified integration is over the velocity. Along the
‘unperturbed orbit’, i.e. the orbit in the phase space of one electron moving in a magnetic field
EB0, we have

d

dt
= ∂

∂t
+ Ev · ∂

∂ Ex −
e

me
(Ev × EB0) · ∂

∂ Ev . (A4)

Then equation (A3) becomes

i
d

dt
(fE) = FE − ηE

∫
f. (A5)
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Integrating this, we get

if =
∫ t

−∞
dt ′ F ′E′E−1−

(∫ t

−∞
dt ′ η′E′E−1

)∫
f (A6)

where the primed functions mean the functions of primed variables. Note that in the above
integration over timet the fact Imz > 0 has been used to choose−∞ as the lower limit.
A further integration with respect to velocity gives∫

f =
∫∫ t
−∞ dt ′ F ′E′E−1

i +
∫∫ t
−∞ dt ′ η′E′E−1

. (A7)

Plugging this back into (A6), we have

(z− K)−1F = −i
∫ t

−∞
dt ′ F ′E′E−1 +

∫ t

−∞
dt ′ η′E′E−1

∫∫ t
−∞ dt ′ F ′E′E−1

i +
∫∫ t
−∞ dt ′ η′E′E−1

. (A8)

Adopting the coordinate system and notation in (27) and (28), we write out (A8) explicitly:

R(z)f (Ev) = −i
∫ ∞

0
dτ f (v‖, v⊥, θ − ω0t)e

−iφ(τ)

+
∫ ∞

0
dτ η(Ev′)e−iφ(τ)

∫
dEv ∫∞0 dτ f (v‖, v⊥, θ − ω0t)e−iφ(τ)

1− i
∫

dEv ∫∞0 dτ η(Ev′)e−iφ(τ)
(A9)

where

φ(τ) = k⊥v⊥
ω0

(sinθ − sin(θ − ω0τ)) + (k‖v‖ − z)τ (A10)

η(Ev′) = η⊥ cos(θ − ω0τ) + η‖. (A11)

The case Imz < 0 can be dealt with similarly, which also leads to (A9). The step from (A9)
to (46) is direct integration with respect toτ using Bessel functions.
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