
Lecture 24  

A complete discussion of image formation using various lens combination may be found in Hecht 

5.2. 

The procedure is quite straight forward: 

(i) Start with the object and just the first lens  

(ii) Find the image formed by the first lens (may be real or virtual ) 

(iii) Consider the image formed by the first lens to be the object of the second , and find that 

image  

(iv) Repeat seq uentially for all the lenses in the system. 

 

Ex. compound microscope(not to scale!) 

   

 

L- “tube length “ = 160mm usually  

1

feye

= 60 “diopters” (q diopter = 1
1m

) 

Ex. two lenses of focal lengths 1f and 2f , spaced by a distance d < 1 2f f  

This is considerably trickier –see Hecht fig. 5.29 for an accurate drawing. 

The procedure here is to first ignore the second lens and find the image produced by the first lens. 

Then trace a ray back through the center it is undeviated, and is thus a real ray through both 

lenses. Then ray 3 on the figure, which is parallel to the axis, goes through the focus of the 

second lens, and the intersection of rays 2 and 3 gives the location of the final image. 



Paraxial Ray Tracing and Matrix Optics 

Lipson 3.5  

Guenther chap.5 pp.138-144 and 182-190 

Siegmen’s lasers chap. 15 sections 1 and 2 only (on CTOOLS) 

 

We consider only paraxial rays, propagating at small angles with respect to the z-axis. 

 



      small => sin   

Clearly, we need to specify only two parameters to completely characterize rays in the meridional 

plane , namely y and  . 

Sign convention: y and   are positive as shown  

   (i.e. y>0 = “up” and     in ccw direction ) 

 

We shall not concern ourselves with the extensions to the theory required to describe skew rays; 

it will be sufficient for our purposes to consider only meridional rays. 

Terminology: we will speak of the ray parameters y and   at “reference planes” corresponding 

to z = correct. 

1. Propagation in free space  

 

As the ray goes from reference plane 1z  to 2z ,  remains unchanged, and only y 

changes . 
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Define d = 2 1z z  = distance between two reference planes paraxial approximation: 

1 1tan   
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  “ ray transfer equations “ 

These can be written in the following form: 
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The quantity 
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 is called a ray vector. (note alternative conviction : 
y
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; this yields slightly 

different ray matrix from ours ) 



The matrix 
1

0 1

d
T

 
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 is the ray transfer matrix of free space. 

Our program in ray tracing will follow this same line of treatment. For every optical element, we 

will determine a ray transfer matrix which will be of the general form  
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C D
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(often called the “ABCD ” matrix of the system) 

The usefulness of this approach should be obvious: 
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In other words, we can find the ray transfer matrix of a complicated optical system by simple 

matrix multiplication , yielding  
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Our first task, then, is to determine the transfer matrices for all the relevant optical elements. 

2. Refraction at Planar Interface  

2 1y y  

Snell: 2 2 1 1sin sinn n   

Paraxial: 2 2 1 1=n n   
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3. Refraction at spherical surface 

First, we need a sign convention. We follow Guenther +Lipson R>0 if the center of curvature 

is to the right of the vertex , as in the following drawing (Guenther figs 5-9,10): 

 

(vertex of origin O) 

Note that the angler 1  and 2  have been greatly exaggerated for clarity. As drawn, they 

clearly would not satisfy the paraxial condition! 

 

We use Snell’s law at the interface: 

1 i 2 1 i 2sin sin     t tn n n n  

Now our job is to write i  and t  in terms of the ray vector angles 1 and 2 . 

         i 1     

         2t     (since 2  is negative for the ray pointing down ) 

         2t     

The ray intersects the sphere at height y1, so  

1 1sin
y y

R R
    (Paraxial approx. again) 

=>Snell becomes  



   

   

1 1 2 2

1
2 2 1 1 2 1 1 1 2 1

2 1 1
2 1 1

2 2

y

n n

y
n n n n n n n

R

n n n

n R n

   

   

 

  

     


  

 

And 2 1y y  

The ray transfer matrix for a single spherical surface is therefore just  
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Digression: we are following a convention in Guenther and many other texts (e.g. Saled+Teich, 

Photonics), where the ratio of the indices of refraction 1

2

n

n
 appears explicitly in the ray matrix. 

Note that for the refraction matrices, we have  
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In fact, the determinant of the free space matrix also satisfies this, since 1 2n n ! 

Theorem: 1

2

det
A B n

C D n

 
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 
 for any paraxial system, where 1n  and 2n  are the indices of 

refraction of the entrance and exit reference planes of the system. 

 

Siegman’s Layers and many other texts define the ray matrix in such a way that 
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It is important in consulting any text or publication to first determinate their convention! 

Note: the planar surface result follows from the spherical surface matrix simply by taking

R ! 

4. Thin lens  

A “thin” lens is one in which we can neglect the thickness (I.e. we don’t have to include the 

propagation in the glass – only the refraction at the surfaces. 

The most general case is easily considered, in which the index of refraction may be different 



on each side of the lens:  

But for our purposes it will be sufficient to consider a lens in air, so that 1 3 21,n n n n   . 

The thin lens matrix is obtained by multiplication  
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Where 2R = radius of curvature of second surface 

      1R = radius of curvature of first surface 
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Note that 1R  and 2R  can be positive or negative  

Eg. 

 
Plano-convex         biconvex               biconcave               meniscus  

1 0R                1 0R                  1 0R                  1 0R   

2R                2 0R                  2 0R             2 0R   2 1R R  

 

Imaging with one lens  

In order to see the significance of the form of S  above, consider the imaging problem 

                           

 We need a matrix taking us from the object to the image plane  
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For an image to be formed at reference plane 2z , all rays coming from appoint 1y  must end up 

at a point 2y , independent of 1 .That means we must have B=0 for an image to be formed. 

B=0 =>  
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This looks just like the thin lens imaging eqn. 
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=
fS S
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If we identify the focal length as  

         
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This result is sometimes called the “lens-makers” equation, since it tells you what combinations 

of refractive index and radii of curvature will produce a lens of a desired focal length. 

Back to the ray matrix for a thin lens: 

 Given the above “lens-makers” equations, we can simplify the form of the matrix S  on P.205: 

1 0

1
1

f

S

 
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 
 

 

Recall that we assumed n=1 at both the object and image planes. This yields 

det 1S   

 

Example: 2 immediately adjacent thin lenses 



        
The matrix of the combination is 

1 0 1 0 1 0 1 0

1 1 1 1 1
1 1 1 1

f f f f fb a a b

M
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Where the focal length of the combination is given by  

      
1 1 1

f f fa b

   

Note that without the matrix formalism, the calculation of this would be a mess (see Hecht)! 

Here it is completely trivial. 

 

Back to the one-lens imaging problem. 

We now know that we can rewrite the object-image matrix O  in the form 

   

 S’= image distance  

 S= object distance (<0)  

 

 

Now we want to consider the physical meaning of the off-diagonal elements A and D. 
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