
Lecture 37 

The Array Theorem  

There are many cases in optics, especially the N-slit or diffraction-grating problem, where we 

must consider diffraction from a number of identical apertures. 

e.g. N slits  

  

 Aperture transmission function is (1-D) 
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where nx  = center position of each aperture  

1( )f x = aperture function of 1 aperture (all identical) 

The Fraunhofer diffraction pattern is thus proportional to  
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Now we can write the aperture function as  

        1 1( ) ( ) ( )n nf x x f x x d        

This is the form of a convolution integral. We can then apply the convolution theorem of Fourier 

transforms. 

For any functions  1( )    xf x F w  and  1( )    xg x G w  
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An example of this is the diffraction grating  
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  Diffraction envelope      interference of N slits  

 

 

Another useful theorem (we’ll show for Fraunhofer diffraction): Babinet’s Principle  

- Consider an aperture 1    

 

                           lens to get to far field  

      1 = diffraction pattern (field!) of 1  

 Now consider the complementary aperture 2   

 (the combination of the two apertures is transparent everywhere – i.e. no aperture at all ) 

 

 

Theorem： 1 2    , where   is the field that would be present on the screen with no 

aperture present. 

Proof: left as an exercise (see Guenther app.11-A) 



(This is useful on occasion when one knows   and
1 , and wants to find 

2  - e.g. homework 

corona problem!) 

 

Image formation and resolution  

- Lipson 12.1-12.3 

- FYI only (not on exam)  

The theory of diffraction we have been developing can be used to give a complete description of 

image formation. We don’t have time to pursue this important theory – the interested student 

can find the full theory in Goodman’s book Fourier Optics (which is used in 435). We shall have to 

content ourselves with a qualitative consideration of several points of view which arise from the 

theory. 

 

We know how images are formed in geometrical optics; an ideal imaging system will image each 

point on an object onto a single point in the image volume. (No aberrations => perfect 

“stigmatic” imaging.) 

       

From diffraction theory we know, however, that even in the absence of aberrations, the finite 

aperture of any real optical system will cause each image point to be blurred (into an Airy disk if 

the aperture is circular). 

 

Nomenclature: 

 “point-spread function” = image produced by an optical system of an object point  

    

Now consider the imaging of two object points:  

      

Case(i)： sP and sP  are coherent with respect to each other (e.g. object is illuminated with a  

coherent source such as a laser) 

Coherence => add fields  

        1 1 1 2+baJ J        



Image field = (geometrical image)  (  1J  ) 

convolution 

Note that the image will depend on the phase relationships of the object points! 

Image intensity = 
2

image field   

Case (ii)：
sP and 

sP  are incoherent with each other (e.g. they are independent emitters such as 

fluorescent molecules ,or they are illuminated by a perfectly spatially incoherent source). 

   Incoherence => add intensities  
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Thus if we consider the point-spread function for incoherent imaging to be the intensity PSF 

(
2

1J  for a circular aperture), we arrive at the statement 

   image intensity = (geometrical image) (point spread function) 

e.g. I-D imaging  

    

Thus we see that diffraction limits the spatial (or angular) resolution of an imaging system to 

about the size of the Airy disk. 

 

Resolution: 

Rayleigh criterion: two points are said to be resolved if the maximum of the PSF of SP  overlaps 

with the first minimum of the PSF of 
SP . 

Sparrow criterion: two points are resolved if the intensity shows a minimum between them. 

 

 

 

See lipson figs. 12.6+7: 



 

Note the Rayleigh criterion fails for coherent imaging!! 

For incoherent imaging, we find from our expression (P.377) for the Airy disk, that the minimum 

angular separation of two points is  

     Rayleigh:  
min 1.22

D


    (D=aperture diameter) 

     Sparrow:  
min 0.95

D


   

From a Fourier optics point of view, we have seen that a lens acts as a “Fourier transformer”  

(Fraunhofer diffraction pattern   Fourier transform of input field, i.e. aperture function). 

 

Of course, we saw that the diffraction pattern is not exactly the Fourier transform, but is 

multiplied by an overall quadratic phase (see P.371). 

 

It is straightforward to show that, if an object is placed at a distance f in front of a lens of focal 

length f, the quadratic phase is eliminated.  

 Field is an exact Fourier transform  

 



From this it is easy to see how a second lens will essentially “inverse Fourier transform” to yield 

an image (intuition: just apply time-reversed symmetry to propagation!) 

   

The Fourier analysis shows that the image is magnified and inverted, just as geometrical optics 

predicts.  

 Imaging can be considered to be a process of double Fourier transformation  

Effect of finite aperture size: lose high spatial frequencies (see fig. below) => Fourier transform 

between the two lenses is not exact (missing detail) 

 

 Naturally find image = convolution of object with PSF  
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