
0.1 Prism GVD

The scheme is similar to gratings:(Figure 1) the first prism provides angular (and hence

group delay) dispersion, and the second prism is adjusted to compensate the angular

dispersion so the phase fronts of the various frequency components of the pulse are

parallel:

Figure 1: Prism GVD.

1. Brewster prism are usually used in conjunction with p-polarised light to es-

sentially eliminate reflection losses. This is a huge advantage that the prism

pair has over the grating pair. (Recall that a Brewster prism is one in which the

minimum deviation condition corresponds to an angle of incidence= Brew-

ster’s angle.)

2. Output has spatial chirp, as with gratings. Solution: double pass using a mirror

in the S’ plane, or (frequently done in dye lasers) use 4 prisms.(Figure 2)

Figure 2: use 4 prisms to deal with spatial chirp.

Note that this arrangement does not displace the beam from its original path. This

has been a useful feature in some systems (especially dye lasers with ring cavities), in
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which alighment is more easily accomplished without the prisms, and then the prisms

are inserted as a unit to perform dispersion compensation.

3. Note that the ray goes the apex of the prisms. This is to minimize the material

contribution to the total GDD of the prism pair.

4. Before we go on to calculate the prism GDD, we can get a basic idea of the

prism operation graphically:(Figure 3)

Figure 3: basic idea of the prism operation.

a

The dashed lines are wavefronts, so the optical paths:

2l1 = nl2 (equal phase delays)

However, beam 2 has a larger group delay, since it goes through more glass, and

vp > vg. Thus (for any given frequency component of the pulse), the pulse acquires a

tilt. (Figure 4)
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Figure 4: the pulse acquires a tilt.

The second prism of the pair does two things:

• it undoes the angular dispersion of the first prism, so that the wavefronts of

the different frequency components are parallel (Figure 5)

Figure 5: the wavefronts of the different frequency components are parallel.

• It undoes the pulse tilt from the first prism. Thus for each frequency component,

there is no pulse tilt after the second prism, only a group delay. (Figure 6)
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Figure 6: for each frequency component, there is no pulse tilt after the
second prism, only a group delay.

We have shown that angular dispersion in general gives negative GDD. Thus al-

though the pulse tilt is undone for both the red and glue components of the pulse,

there is a negative group delay:(Figure 7)

Figure 7: although the pulse tilt is undone for both the red and glue com-
ponents of the pulse, there is a negative group delay.

Note that (for the case of positive dispersion) the red is redshifted less than the

blue ⇒ goes through more glass in the second prism ⇒ final pulse front has a larger

group delay for red than blue ⇒ negative GDD.

5. Suppose L → 0 (prisms in contact).(Figure 8) Then the GDD of the material

would imply that the red would come out before the blue (positive GDD).
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Figure 8: L → 0 (prisms in contact).

Thus the prisms must be sufficiently far apart that the negative GDD due eto

angular dispersion is greater than the positive GDD due to material dispersion.

6. We are now in a position to calculate the prism GDD.

Consider a ray at the carrier frequency ω0, and calculate the dispersion of other

frequencies within the pulse bandwidth that propagate at an angle α with respect to

the central frequency.

⇒ we are after

dα

dω
=
dα

dn

dn

dω

We know

dn

dω
= − λ2

2πc

dn

dλ

= prism material dispersion

⇒ we need dα
dn

for the Brewster prism
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Figure 9: minimum deviation condition: ψ1 = ψ2.

minimum deviation condition: ψ1 = ψ2 (so ψ′1 = ψ′2) (at ω0 only!) (Figure 9)

Brewster prism:

tanψ2 = n (fixes all ψ)

apex angle:

γ + (900 − ψ′1) + (900 − ψ′2) = 1800

⇒ γ = ψ′1 + ψ′2

⇒ dψ′1
dn

= −dψ
′
2

dn

Apply Snell’s law to 1st interface:

sinψ1 = n sinψ′1

cosψ1
dψ1

dn
= 0 since input angle is fixed

⇒ sinψ′1 + n cosψ′1
dψ′1
dn

= 0

n
dψ′1
dn

= − tanψ′1 = −ndψ
′
2

dn
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Snell’s law at 2nd interface

sinψ2 = n sinψ′2

cosψ2
dψ2

dn
= sinψ′2 + n

dψ′
2

dn
cosψ′2

= sinψ′2 + tanψ′1 cosψ′2

dψ2

dn
=

1

cosψ2

(sinψ′2 + tanψ′1 cosψ′2)

(true in general, but now we can apply the min. dev. condition)

dα
dn
|λ0 = −dψ2

dn
= − 1

cosψ2
(sinψ′2 + sinψ′2) since ψ′1 = ψ′2

= −2 sinψ′2
cosψ2

= −
2( 1

n
sinψ2)

cosψ2

= − 2

n
tanψ2

= − 2

n
· n = −2

Now we can get the GDD:

ϕ′′ = −Lω0

c
(
dα

dω
)2

= −Lω0

c
(
dα

dn

dn

dω
)2

= −Lω0

c
(4)(

λ2

2πc

dn

dλ
)2

ϕ′′2 = −4L
λ3

2πc2
(
dn

dλ
|λ0)2
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(angular dispersion condition to prism dispersion)

We would not go through the derivation, but the thrid order term is

d2α

dn2
=

2

n3
− 4n

⇒

ϕ′′′2 =
12Lλ4

2π2c3
{(dn
dλ

)2[1− λdn
dλ

(
1

n3
− 2n)] + λ(

dn

dλ

d2n

dλ2
)}|λ0

ratio of 3rd order to 2nd order

R32 = |ϕ
′′′∆ω

3ϕ′′
| = [1− λdn

dλ
(

1

n3
− 2n) + λ

d2n
dλ2

dn
dλ

]λ0
∆λ

λ

⇒ both material parameters and the pulse bandwidth will determine the relatie

importane of the 3rd order.

e.g. R32 ' 0.1 for 20 fs pulses at 620 nm in fused silica. ( This may not be too

big a problem for a single pass application. In laser cavities, however, the pusle makes

repetitive passes through the prisms, and small phase errors build up, so 3rd order

phase considerations are much more crucial.)

So far, we have considered only the angular dispersion contribution. There is also

a material contribution.(Figure 10) (e.g. for L˜0, it is like the dispersion in a plane

parallel piece of glass!)

Figure 10: material dispersion contribution.

def. d= mean accumulative path length in glass (i.e. length at ω0)
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⇒ must add ϕ′′d = λ3

2πc2
dd

2n
dλ2
|λ0

in 3rd order

ϕ′′′d = − λ2

4π2c3
[3λ2

d2n

dλ2
+ λ3

d3n

dλ3
]d

So that the total prism dispersion is

ϕ
′′′

tot =
λ3

2πc2
[d
d2n

dλ2
− 4L(

dn

dλ
)2]λ0

The third order term is obtained b y adding ϕ
′′′
d + ϕ

′′′
l .

1. Note that

angular dispersion < 0

material dispersion > 0 (in visible+ near IR; λ < 1.3µm)

⇒ the sum can be positive or negative

⇒we can have an adjustable GDD by simply varying the amount of material d

(this is easier than adjusting the spacing L, since varying d does not change the beam

position by much) (Figure 11)

Figure 11: adjustable GDD by simply varying the amount of material d.

2. Note also that prism dispersion is generally much less than that of gratings.

Here are some numbers for comparison. (Table 1) (SQ1= quartz)
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Table 1: dispersion of prism and grating

device λl (nm) ωl (fs
−1) ϕ

′′
(fs−2) ϕ

′′′
(fs−3)

f 620 3.04 550 240
800 2.36 362 280

Brewster prism pair 620 3.04 -760 -1300
SQ1

(L = 50 cm) 800 2.36 -523 613
grating pair 620 3.04 -8.2× 104 1.1× 105

b = 20 cm; β = 0◦

d = 1.2µm 800 2.36 −3× 106 6.8× 106

3. Note that the prisms must be sufficiently far apart to give negative dispersion.

The minimum material path length d is something on the order of the beam diameter.

(i.e. typically a few mm) in order to avoid vignetting; this establishes a minimum L in

practice.

For reference, the following table shows prism dispersions for various materials; this

is for a single pass through a pair of prisms at 800 nm.

Table 2: dispersion of a pair of prisms

Pair of prisms (L and d in cm)
ϕ

′′
(fs−2) ϕ

′′′
(fs−3)

prism media d L d L
titane-sapphire 1020.99 -26.00 753.32 -32.62

silica 683.56 -10.81 522.88 -12.14
SF10 glass 2850.13 -89.04 2020.50 -222.14
SF14 glass 3667.41 -122.66 3418.22 -356.04

LaK31 glass 1259.20 -31.39 897.59 -47.16
LaFN28 glass 1632.31 -44.82 1107.33 -81.10

In fact, for femtosecond oscillators, intracavity dispersion compensation is generally

accomplished with prisms and not gratings for three reasons:

(i) lower dispersion

(ii) essentially no insertion loss

(iii) ϕ
′′′

can be negative for prisms, while it is always positive for gratings and

material. Thus a cavity compensated to 3rd order requires prisms.
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0.2 Gratings again

The dispersion of gratings can be calculated in the same way, via

ϕ
′′

= −Lω0

c
(
dα

dω
)2ω0

Figure 12: The dispersion of gratings.

From the diagram(Figure 12), L = G
cos θ

.

grating eqn.

sin γ = sin θ +
λ0
d

= sin θ +
2πc

ω0d

and

sin γ = sin(θ + α) +
2πc

ωd

sin(θ + α) = sin γ − 2πc

ωd

cos(θ + α)
dα

dω
=

2πc

ω2d
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dα

dω
=

2πc

ω2d cos(θ + α)

We can evaluate this at α = 0 since we are interested in ϕ
′′

at ω0.

dα

dω
|ω0 =

2πc

ω2d cos θ

⇒

ϕ
′′

= −Lω0

c

4π2c2

ω4
0d

2 cos2 θ

= − 4π2c
ω3
0d

2
G

cos3 θ
(L = G

cos θ
)

( × 2 for double pass)

= − GN2λ3

πc2 cos3 θ
(exactly as we found last time)
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