
Lecture 31 

The total transmitted field is thus the sum  
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We can get the reflected field in exactly the same way: 
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Now lets’ consider the transmitted intensity: 
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This is a general expression, but it will be useful to consider more specifically the special case of 

the symmetrical Fabry-Perot, where 1 2r r r  , and
2

1 2 1t t t r    . 
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Now  



  

 

 

2
2

2

2

2 2

2 2

1 1 1

1

1 2 cos

1 2 (1 2sin )
2

1 4 sin
2

i i i

i i

r e Re Re

R e e R

R R

R R

R R

  

 







 



   

   

  

   

  

2R r  

   

 
 

2

2 2

2

4
1 1 s i n

21

t r a n s i n c

T
I I

R
R

R




 
  

  

 

Def. 
 

2

4

1

R
F

R



= “contrast” (sometimes called the coefficient of finesse) 
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Now that when  
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If the system is lossless, so T+R=1 , then max incI I !  
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Note that if the mirror reflectance are large, so R is nearly 1, then F becomes very large  

=> min maxI I  

It is easy to verify that for a lossless Fairy-Perot, power is conserved  
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So we have  

    

See Guenther fig.4-17 for accurate plots with different values of R. 

 

 



 

 

Note that the F-P transmission function is periodic, with a maximum every time  
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The separation in frequency between two orders  1m   is called the free spectral range of 

the Fabry-Perot : 
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For convenience, we define  

         cos tL nd   

This is obviously just the “effective thickness” of the Fabry-Perot! (Not the actual O.P.L.!!) 
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The free spectral range is often called (especially in laser theory) the axial mode spacing of the 

Fabry-Perot. This is because the transmission resonances simply correspond to the standing 

waves, or modes, which the cavity can support.  

 (new mode every / 2 ) 

Now let’s consider the width of the transmission resonances. We will characterize the width as 

usual by the full-width at half-maximum. 

i.e. at what values of   does  
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Now, when F>>1 (high reflectivity mirrors), as is usually the case , this simplifies considerably , 

since in this case 
2v  is small  
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It is useful to write this in terms of frequency. Again start with  
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When F is large,   is small, so are may fake the differential of both sides  
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It is traditional to define the finesse  by  
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Since 1, 1F ,and 
1/2FSR   . 

Under these circumstances it is possible to use a Fabry-Perot to perform spectroscopy. 

e.g. spectrum to be measured  

    

 
Spectroscopy: measure intensity on detector vs. frequency by scanning the F-P spacing d  

Note: we want  

(i) 1/2  of the F-P to be ,if possible, narrower than the spectral structure of the source to be 

measured  

(ii) FSR must be larger than the total extent of the source spectrum (the free spectral range 

causes an ambiguity in the frequency otherwise). 

A common implementation is to vary the spacing d electrically via piezoelectric crystals 

separating the mirrors. 

Note convolution:      detector source= FPI I d         

What is the smallest wavelength or frequency interval that can be measured?  

The decision of when two wavelengths are resolved is a qualitative, rather than quantitative one, 

so the choice has some arbitrariness. One common one is to say that two wavelengths are 



resolved when the half-amplitude point of one just overlays the half-amplitude point of the other. 

       

Clearly, the separation is then just 1/2 ! 

Def. resolving power  
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Note that FSRm      m=order (mode number) 
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 To get a high resolving power, use a high  and high m (but you can’t increase m forever 

without running into trouble with the free spectral range!) 

 

 

 

 


