Lecture 31

The total transmitted field is thus the sum
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We can get the reflected field in exactly the same way:
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Now lets’ consider the transmitted intensity:
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This is a general expression, but it will be useful to consider more specifically the special case of
the symmetrical Fabry-Perot, where; =1, = ,andt, =, =t = 1-r? .
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Def. F = (17 = “contrast” (sometimes called the coefficient of finesse)
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If the system is |ossless, so T+R=1, then | =1, !
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When 5:7z,37z,57z,...,sinzg=1:>
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Note that if the mirror reflectance are large, so R is nearly 1, then F becomes very large
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It is easy to verify that for a lossless Fairy-Perot, power is conserved



Iinc= I tr_zi—nsl !

So we have
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See Guenther fig.4-17 for accurate plots with different values of R.
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ITERFERENCE

FIGURE 4-19. The output fringes from a Fabry—Perot interferometer. Several sets of fring
due to muttiple colors are present in this photo. as can be seen in the print in the color insc
Courtesy of Fredrick L. Roesler. University of Wisconsin
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Using (4-46) vields
R S Sl (4-4

Differentiating (4-34) to get a relationship between A8 and A# yields
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A bright band will occur whenever

2nyd cos H, = mA (4-4
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Note that the F-P transmission function is periodic, with a maximum every time

2 mdcog)= 2m @ 0,1,
C

The separation in frequency between two orders (Am Zl) is called the free spectral range of

the Fabry-Perot :

2Aﬂ(nd cosf,)=2rx



For convenience, we define
L =nd cosé,

This is obviously just the “effective thickness” of the Fabry-Perot! (Not the actual O.P.L.!!)
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The free spectral range is often called (especially in laser theory) the axial mode spacing of the
Fabry-Perot. This is because the transmission resonances simply correspond to the standing

waves, or modes, which the cavity can support.

o L.

<t s —. . —-e (new mode every A/ 2)

Now let’s consider the width of the transmission resonances. We will characterize the width as
usual by the full-width at half-maximum.

i.e. at what values of & does
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Now, when F>>1 (high reflectivity mirrors), as is usually the case , this simplifies considerably ,

since in this case 5V2 is small
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It is useful to write this in terms of frequency. Again start with
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When Fis large, AJ is small, so are may fake the differential of both sides
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It is traditional to define the finesse F by
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Which yields the ratio of the FWHM to the FSR as
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Since F>1F>1and Av,y >Av,.

Under these circumstances it is possible to use a Fabry-Perot to perform spectroscopy.

e.g. spectrum to be measured
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Spectroscopy: measure intensity on detector vs. frequency by scanning the F-P spacing d
Note: we want

() Avy, ofthe F-P to be ,if possible, narrower than the spectral structure of the source to be
measured
(i)  AVgg must be larger than the total extent of the source spectrum (the free spectral range

causes an ambiguity in the frequency otherwise).
A common implementation is to vary the spacing d electrically via piezoelectric crystals

separating the mirrors.
. —_ ’ ’ ’
Note convolution: | ocor (U) =[Te (U —v ) leource (U )dl)

What is the smallest wavelength or frequency interval that can be measured?
The decision of when two wavelengths are resolved is a qualitative, rather than quantitative one,
so the choice has some arbitrariness. One common one is to say that two wavelengths are



resolved when the half-amplitude point of one just overlays the half-amplitude point of the other.
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Clearly, the separation is then just Ay, !

Def. resolving power

A v
Ady, Avy,

Note that v = MA Vg, m=order (mode number)

_ MAVeg
Avy,

= |R =mF

= To get a high resolving power, use a high [F and high m (but you can’t increase m forever
without running into trouble with the free spectral range!)



