
1 Representation of short optical pulses

There are many ways to mathematically represent optical pulses. It is usually quite

straightforward, though some subtleties may enter when the pulse is only a few cycles

long. For the sake of establishing a systematic notation and terminology, we will give

some important representations here.

Simpliest case: amplitude-modulated sine wave

e.g. Gaussian modulation

ε(t) = ε0e
−at2 cosω0t = ε0e

−t2/2τ2

cosω0t

= ε0e
−[(4 ln 2)(t/τp)2] cosω0t

e−[(4 ln 2)(t/τp)2] : Gaussian envelope; cosω0t : carrier wave.

Why Gaussians?

(1) math is straightforward

(2) commonly produced by actively mode-locked lasers, as we shall see

Complex notation (following Siegman):

ε(t) = Re[ε̃(t)] =
1

2
[ε̃(t) + ε̃∗(t)] =

1

2
ε̃(t) + c.c.

1.1 Irradiance

Irradiance(W/m2) - usually called the ’intensity’ in casual conversation, although it is

not correct radiametric usage:

I(t) = ε0cn ·
1

T

t+T
2∫

t−T
2

ε2(t)dt

1
T

∫ t+T
2

t−T
2

ε2(t)dt : average over 1 optical cycle.
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e.g. Gaussian

I(t) = ε0ε
2
0cn ·

1

T

t+T
2∫

t−T
2

e−2at2 cos2 ω0tdt

In principle you have to stop here and calculate directly. However, in nearly all

cases, one can make the Slowly varying envelop approximation.

1.2 Slowly varying envelop approximation(SVEA)

The ampliitude of the envelop does not change appreciably over an optical cycle(τ−1 �

ω)

I(t) = ε0ε
2
0cne

−2at2 · 1

T

t+T
2∫

t−T
2

cos2 ω0tdt

Thus the irradiance just follows the square of the amplitude envelope function.

I(t) =
1

2
ε0ε

2
0cne

−2at2 (W/m2)

Note that for visible wavelengths τ ∼ 2fs

Records(SVEA breaks down!):

1. shortest optical pulse = 2.8 fs

2. shortest directly?? laser = 5 fs

Routine: perhaps τ ≥ 50fs (SVEA is ok)

See Figure 1. FWHM= 1.67τ (Note: breakdown of SVEA in figure)

1.3 complex notation

Usually for shorthand we will of course write

ε̃(t) = ε0e
−at2eiω0t

and we know that is understood.

2



Figure 1: Profile of the electric field of a 6 fs duration pulse at 620 nm (continuous).
The broken line curve represents the corresponding intensity profile as a function of
time.

Then

I(t) = ε0cn ·
1

T

t+T
2∫

t−T
2

[Re(ε̃)]2dt

= ε0cn ·
1

T

t+T
2∫

t−T
2

[
1

2
(ε̃+ ε̃∗)]2dt

=
ε0cn

4
· 1

T

t+T
2∫

t−T
2

(ε̃2 + 2ε̃ε̃∗ + ε̃∗2)dt

=
ε0cn

4
ε2

0e
−2at2 · 1

T

t+T
2∫

t−T
2

(e2iω0t + 2 + e−2iω0t)dt

(using the SV EA)
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As usual, the averages over the period T of the oscillating functions is zero:

1

T

t+T
2∫

t−T
2

e2iω0tdt =
1

2iω0T
e2iω0t|t+

T
2

t−T
2

(T =
1

ν0

=
2π

ω0

)

=
1

4πi
e2iω0t(e2πi − e−2πi) = 0

the only remaining term is the constant one

I(t) =
ε0cn

2
ε2

0e
−2at2

which is (of course!) the same result as before.

The real point of this exercise: if you write ε̃(t) = ε0e
−at2eiω0t, then the irradiance

is

I(t) =
1

2
ε0cn ·

1

T

t+T
2∫

t−T
2

ε̃∗ε̃dt

(note the factor
1

2
)

1.4 Common pulse shapes + notations

(τp= intensity FWHM)

1. Gaussian ε(t) ∝ e−1.386(t/τp)2
= e−(t/τ)2

, τ = τp√
2 ln 2

2. Lorentzian ε(t) ∝ 1
1+1.656(t/τp)2 = 1

1+(t/τ)2 , (homework)

3. sech ε(t) ∝ sech [1.763t/τp] = sech (t/τ), τ = τp
1.76

1.5 Fluence

Fluence is energy per unit area in one pulse:

U =

+∞∫
−∞

I(t)dt (J/m2)
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1.6 Beyond the simplest case

(i) envelope could be arbitrary (not necessarily a simple function!)

(ii) phase advance may not be linear with time

i.e. we had ε̃(t) = E0e
−at2eiω0t = E0e

−at2eiΦ(t)

where Φ(t) = ω0t, and phase is linear in time.

Taking (i) and (ii) more generally, we may have

ε̃(t) = E(t)eiΦ(t)

E(t) : envelope(usually slowly varing); Φ(t) : phase.

1.7 Example(extremely common): quadratic temporal phase

Φtot(t) = ω0t+ bt2

The ’instantaneous frequency’ is the rate of phase advance:

ω ≡ dΦtot

dt

ω =
d

dt
(ω0t+ bt2) = ω0 + 2bt

Thus the frequency changes with time, called a chirp (in this case a linear chirp).

example: linearly chirped Gaussian pulse (Figure 2)

ε̃(t) = E0e
−at2ei(ω0t+bt2)

= E0e
−(a−ib)t2eiω0t
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Figure 2: linearly chirped Gaussian pulse. Red dashed curve: Φ(t) = ω0t

= E0e
−Γt2eiω0t

Thus we have written the pulse as a product of a slowly varying amplitude and

phase, and an optical (rapidly oscillating) carrier wave. This is useful only if both a

and b are small, so that both the intensity envelope and the nonlinear phase vary slowly

relative to the carrier frequency. (Clearly the wave drawn at the top does not satisfy

that condition!)

Irradiance

I0(t) ∝ ε̃∗ε̃

= I0e
−2at2

= I0e
−[(4 ln 2)(t/τp)2]

which depends only on the a parameter. τp =
√

2 ln 2
a

= FWHM
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1.8 Gaussian pulse spectrum

Of course, the field in the frequency domain is related to the field in the time domain

via the Fourier transform:

ε̃(ω) =

+∞∫
−∞

ε̃(t)e−iωtdt

= E0

+∞∫
−∞

e−Γt2ei(ω0−ω)tdt

This integral may be evaluated by completing the square in the exponent:

ε̃(ω) ∼
+∞∫
−∞

e−Γt2−2Btdt 2B = −i(ω0 − ω)

=

+∞∫
−∞

e−Γ(t2+ 2B
Γ
t)dt =

+∞∫
−∞

e−Γ[(t+B
Γ

)2−B2

Γ2 ]dt

= e
B2

Γ

+∞∫
−∞

e−Γ[(t+B
Γ

)2

dt = e
B2

Γ

+∞∫
−∞

e−Γt′2dt′

=

√
π

Γ
e

B2

Γ (′Siegman′s lemma, p.337)

Thus we find

ε̃(ω) = E0

√
π

Γ
e−

(ω0−ω)2

4Γ

Or, explicitly in terms of the a and b parameters:
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ε̃(ω) ∼ e−
(ω0−ω)2

4(a−ib)

= e
− 1

4

(ω0−ω)2(a+ib)

a2+b2

= e
−a

4

(ω0−ω)2

a2+b2 × e−
ib
4

(ω0−ω)2

a2+b2

e
−a

4

(ω0−ω)2

a2+b2 : Gaussian envelope in frequency domain; e
− ib

4

(ω0−ω)2

a2+b2 : quadratic phase

shift in frequency domain arising from quadratic shift in time domain (b 6= 0)

You must take to your gra?? the knowledge that a ’linear chirp’ corresponds to a

quadratic phase shift in the frequency domain.
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