
Ẽ(z, ω) = e−iβ(ω0)z−iβ′(ω−ω0)z−( 1
4Γ0

+i 1
2β

′′z)(ω−ω0)2

It is worth reiterating that, since this is linear propagation, the output pulse spectrum is the same

as the input spectrum

|Ẽ(z, ω)|2 = |Ẽ0(ω)|2

However, the pulse does change in the time domain. According to our program, the output is the

inverse Fourier transform

ε̃(z, t) =

+∞∫
−∞

Ẽ(z, ω)eiωtdω

= e−iβ(ω0)z

+∞∫
−∞

eiωt−iβ
′(ω−ω0)z−( 1

4Γ0
+i 1

2β
′′z)(ω−ω0)2

dω

= ei[ω0t−β(ω0)z]

+∞∫
−∞

ei(t−β
′z)(ω−ω0)−( 1

4Γ0
+i 1

2β
′′z)(ω−ω0)2

d(ω − ω0)

define

1

Γ(z)
=

1

Γ0
+ 2iβ′′z

(envelope and chirp parameters are spatially varying)

ε̃(z, t) = ei[ω0t−β(ω0)z]

+∞∫
−∞

ei(t−β
′z)(ω−ω0)− 1

4Γ(z)
(ω−ω0)2

d(ω − ω0)

ei[ω0t−β(ω0)z] : time and space dependence of carrier wave; ei(t−β
′z)(ω−ω0)− 1

4Γ(z)
(ω−ω0)2

: time and

space dependence of (slowly varying) envelope.

It is clear on inspection that the temporal form of the envelope is e−Γt2 , but with a shift in time

of t− β′z.

Calculating explicitly (using ’Siegman’s lemma’ again):

ε̃(z, t) = ei[ω0t−β(ω0)z]e−Γ(z)(t−β′z)2
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= eiω0[t− β(ω0)z

ω0
] × e−Γ(z)(t−β′z)2

= e
iω0[t− z

vΦ(ω0)
] × e−Γ(z)(t− z

vg(ω0)
)2

Thus after propagation over a distance z, there is a phase delay tΦ = z/vΦ(ω0).

=⇒

vΦ(ω0) =
ω0

β(ω0)
′phasevelocity′ at the carrier frequency

After a distance z, the peak at the pulse is delayed by a ’group delay’ tg = z/vg(ω0)

=⇒

vg(ω0) =
1

β′(ω0)
=

1
dβ
dω |ω0

=
dω

dβ
|ω0

′groupvelocity′ of the pulse envelope at the carrier frequency

Note on notation: many texts and publications use k instead of β (and often call it the ’wavevector’

instead of the ’propagation constant’). Hence the often quoted

vΦ(ω0) =
ω

k
, vg(ω0) =

dω

dk

The utility of the β notation is that it emphasizes that, in waveguide problems, the phase and

group velocities are determined by the waveguide eigenvalue β(ω).

A physical picture of GV(group velocity): suppose you are surfing along a wave so that you are

in the rest frame of the wave group. (i.e. going at vg). Then if n(ω)= constant independent of ω,

vΦ = vg, and the arrier wave moves along with you.

However, if n(ω) 6= constant, then vΦ 6= vg, and the carrier wave appears to ’slip’ in the positive

or negative direction according to whether vΦ > vg or vΦ < vg.(Figure 1)

Why should it be the slope which determines the velocity of the pulse envelope (i.e. the wave

group) ?

Consider the Fourier construction of a pulse: peak is where all the waves add in phase.(Figure 2)

Peak of envelope is where the variation of phase on frequency is zero.
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Figure 1: The carrier wave ’slips’.

Figure 2: Peak is where all the waves add in phase.
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Φ = ωt− βz ⇒ dΦ

dω
= t− dβ

dω
z = 0

⇒ t =
z

vg
where vg =

dω

dβ
= group velocity

Now let us consider the intensity envelope in the time domain.

I(z, t) ∝ |ε̃(z, t)|2 ∝ |e−Γ(z)(t− z
vg

)2

|2

where we must remember that Γ(z) is complex.

1

Γ(z)
=

1

Γ0
+ 2iβ′′z

=
1

a0 − ib0
+ 2iβ′′z =

a0 + ib0
a2

0 + b20
+ 2iβ′′z

=
a0

a2
0 + b20

+ i(
b0

a2
0 + b20

+ 2β′′z)

Recall that the width in the frequency domain

∆ωp ∝ Re[
1

Γ
]

=⇒

width is constant in frequency domain. (of course! A linear system can add no new frequencies

to the propagating field.)

In the time domain, however, we must consider Γ(z):

Γ(z) =
1

1
Γ0

+ 2iβ′′z
=

Γ0

1 + 2iβ′′zΓ0

=
a0 − ib0

(1 + 2iβ′′z)(a0 − ib0)
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=
a0 − ib0

1 + 2b0β′′z + 2ia0β′′z

=
(a0 − ib0)[1 + 2b0β

′′z − 2ia0β
′′z]

(1 + 2b0β′′z)2 + (2a0β′′z)2

= a(z)− ib(z)

where

a(z) =
a0

(1 + 2b0β′′z)2 + (2a0β′′z)2

b(z) =
b0(1 + 2b0β

′′z) + 2a2
0β
′′z

(1 + 2b0β′′z)2 + (2a0β′′z)2

Recall the physical meanings of a and b: a is pulsewidth ( of envelope), b is chirp parameter. We

find that the pulsewidth (FWHM τp =
√

2 ln 2
a ) is dependent on propagation distance z! (when β 6= 0)

Simpliest example: b0 = 0 (no initial chirp on pulse, i.e. transform-limited)

a(z) =
a0

1 + 4a2
0β
′′2z2

or

τp =

√
2 ln 2

a0
(1 + 4a2

0β
′′2z2)

= τp0

√
1 + 4a2

0β
′′2z2

(τp =
√

2τp0 in distance l = 1
2a0β′′ )

clearly, the pulse width increases with z.

The rate of increase is determined by

(1) β′′(ω0). Some authors call β′′ the group velocity dispersion (GVD). Others define the GVD

according to

GVD =
dvg
dω

=
d

dω
[

1

( dβdω )
]
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Figure 4: τ(z) for a gaussian pulse of respectively minimal duration of 6 fs (continuous line) and 3 fs
(dashed line), for propagation in fused silica.

=
−1

( dβdω )2

d2β

dω2
= −v2

g

d2β

dω2
|ω0 = GVD(ω0)

In either case, β′′ 6= 0⇒ pulse width changes with propagation distance.

(2) a0. Recall pulsewidth τp0 ∼ 1√
a0
↔ bandwidth ∆ωp ∼

√
a0. That is, the pulse broadening is

larger for a shorter pulsewidth, as one would expect.

Figure 3: Electrical field of a 3 fs pulse (a), and after propagation in 200 µm of fused silica (b). In
this last case the duration has become 10 fs.

Physical interpretation of GVD:

Recall that vg is the slope dω
dβ (or dω

dk ), and that there is a ’phase slip’ between the phase fronts

and the envelope. However, the pulse enveloep stays together if dω
dβ is constant.

If d
2ω
dβ2 6= 0, then we must consider the pulse to be made up of a series of wavepackets, each with a

different ω0. Each wavepacket will have its own dω
dβ (goes at its own vg), so the pulse envelope changes

with propagation.
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Figure 5: Pulse shape of propagation of a linearly chirped Gaussian pulse in a GVD medium.

To think about: why does not linear variation of β cause pulse spreading?

Now go back to the time domain and consider the pulse to be composed of different wavepackets

( which are longer in duration!!) and centered at different frequencies (ω01, ω02, ω03, etc.) (Figure 6)

0.1 Simple model of GVD:

Consider a pulse (of any smooth shape) of spectral width ∆ωp and duration τp. Each spectral com-

ponent travels with its own vg, and the difference of goup velocities over the spectrum is

∆vg '
dvg
dω
|ω0

∆ωp

Thus after propagating a distance z, the pulse will spread by an amount

∆τp = ∆(
z

vg
) = − z

v2
g

∆vg

= − z

v2
g

dvg
dω

∆ωp

= − z

v2
g

(−v2
g

d2β

dω2
)∆ωp

= z
d2β

dω2
∆ωp

Frequently, this is written in the form

∆τp = −DL∆λ
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Figure 6: Wavepacket decomposition of pulses.

D is in ps
m·nm . Since ∆ωp = −ω0

∆λ
λ , ⇒ D = − d2β

dω2
ω
λ
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