
0.1 Positive dispersion with gratings

There are two typical situations in which we would like to use gratings to obtain positive

dispersion:

1. (the reason they were invented by O. Martinez)

In the important wavelength region of 1.5 µm for optical fiber, the dispersion is

actually negative (it flips sign at about 1.3µm), i.e. d2n
dλ2

< 0 for λ > 1.3µm in silica

glass fiber.

⇒ β
′′

¡0 =⇒ D = −ω
λ
β′′ > 0 (Figure 1)

(The negative dispersion is a consequence of infrared absorption in the glass: see

Rgure?? 22.1-2 from Saleh+Teich)

Figure 1: Negative dispersion for λ > 1.3µm.

Thus, in order to compensate material dispersion that is negative, we need

something with adjustable positive dispersion.
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2. Controllable pulse chirping(especially for ‘chirped pulse amplification’).

We would like to be able to stretch and compress pules in a controllable way,

without using any material (so that nonlinear effects due to the high peak power of

ultrashort pulses can be avoided).

In fact, there is a scheme that can give controllable disperison of either sign using

gratings. Note that ϕ′′ for our grating pair is always negative for grating separation

G > 0. A positive ϕ′′ could therefore be obtained. if we could make G < 0.

A negative effeective separation can be obtained by using images. The basic idea

is to make an image of the first grating that is behind the second grating; that will

give an effective G < 0.

Simple idea to make G = 0: image grating 1 onto grating 2.(Figure 2) Clearly, the

optical path length (and hence the group delay) is the same for all wavelengths ⇒

no dispersion.

Figure 2: Simple idea to make G = 0: image grating 1 onto grating 2.

G = 0⇒ ϕ′′ = 0

(At first glance, this looks like an expensive way to do nothing, but we will see later

that this setup is actually quite useful!)

Now consider what happens as the gratings are moved in towards the lences.(Figure

3) The effective propagation distance is now b = z1 + z2 (and b = G
cos θ

).
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Figure 3: the gratings are moved in towards the lences.

⇒ G < 0 if gratings are closer to lenses than f . (⇒ image of 1 is behind 2)

G > 0 if gratings are farther from lenses than f .

All the dispersion eqns. we have derived apply to this grating scheme, but now

with an effective separation G which can be positive , negative, or zero.

0.2 Angular Dispersion in general

Transverse Group Delay

Let us consider first the tilting of a pulse front that occurs on refraction. We need to

recall from last time that

phase delay tp = ϕ(ω0)
ω0

ϕ′(ω0) = tg = group delay = z
c
(n− λdn

dλ
)

Note that in normal optical materials dn
dλ

< 0 =⇒group delay is larger than the

phase delay=⇒the pulse envelope lags behind the wavefront advance.

Now consider a beam of finite size incident on glass, where the pulse and wavefronts

are initially lined up.(Figure 4) In the time B → B′, A→ A′. That elapsed time is

Tphase =
n

c
AA′ =

BB′

c
=
D tan τ

c
fromdiagram
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Figure 4: beam of finite size incident on glass.

Note: pulse and phase fronts coincide at B′ as well as at B (propagation in

nodispersive medium).

But: glass is dispersive, and in that time the phase front has advanced to A′,

but the pulse has advanced only to E (longer group delay, or slower group velocity

compared to phase velocity). =⇒ a tile angle σ builds up. tan σ = EA′

D′ .

Generally:

EA′ = (
c

n
− vg)Tphase

= (
c

n
− vg)

D tan τ

c

also

D′

cos γ′
=

D

cos γ
=⇒ D′ =

D cos γ′

cos γ
=
D

√
1− sin2 γ′

cos γ
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Snell: sin γ = n sin γ′ =⇒ D′ =
D
√
n2−sin2 γ
n cos γ

=⇒ tanσ =
EA′

D′
=

( c
n
− vg)D tan τ

c

D
√
n2−sin2 γ
n cos γ

= (
c

n
− vg)

n

c

sin γ√
n2 − sin2 γ

This is probably the most useful form, since it makes the physical meaning clear.

The difference between the phase and group velocities results in a tilt, or trans-

verse group delay upon refraction into a dispersive medium. The first part of the

expression shows that the tilt angle gets larger for more highly dispersive media. The

second part of the expression just says the angle σ bigger at larger incidence angles

where the beam deviation is larger.

Propagation through plane-parallel plate:

• pulse front acquires tilt inside plate, but on exiting the 2nd refraction corrects

the tilt.

• augument: just apply time reversal.

• ?? the pulses amplitude and phase fronts are again parallel.

• if the planes are not parallel(i.e. a prism), the pulse will acquire a tilt!

Note that the tile angle depends on the group velocity. Thus if a broadband pulse

is incident on a prism, diffirent frequency components will have different vg due to

GVD ⇒ different σ.

Consider the pulse front at the output of a prism.(Figure 5)
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Figure 5: pulse front at the output of a prism.

EA′ = distance phasse has traveled compared to the pulse front= ( a
vp
− a

vg
)c.

( a
vp
− a

vg
) is difference in travel time across the prism.

1

vp
=
n

c
,

1

vg
=
n

c
− λ

c

dn

dλ

EA′ = ac(n
c
− n

c
+ λ

c
dn
dλ

) = aλdn
dλ

tanσ =
aλ

D′
dn

dλ

This is in terms of the beam + prism sizes; what we expect is that it should depend

only on the angular deviation θ. We just need to recall some simple prism geometry. At

minimum deviation, the angle of deviation θ is given by ( see, e.g. Hecht’s Optics)

n sin γ
2

= sin θ+γ
2

(γ= apex angle)

also

cos
θ + γ

2
=
D′

L

6



(at minimum deviation, the ray is parallel to the prism base)

L sin
γ

2
=
a

2

taking derivative

dn

dλ
sin

γ

2
=

1

2
cos

θ + γ

2

dθ

dλ

dθ

dλ
=

2 sin γ
2

cos θ+γ
2

dn

dλ
=
a

L
· L
D′
· dn
dλ

dθ

dλ
=

a

D′
· dn
dλ

(angular dispersion)

⇒ we can write the tilt angle as

tanσ = λ
dn

dλ

Bor has shown that in fact this is a general relation: an angular dispersion dθ
dλ

lends to a transverse group delay.

0.3 GVD through angular dispersion

Recall the general program for pulse propagation: for a lossless medium we just need

the phase part of the transfer function e−iϕ(ω), where the phase delay is

ϕ(ω) = β(ω)z =
ω

c
n(ω)z =

ω

c
p(ω)

where p(ω) is the optical path length.

Thus the group delay dispersion is

ϕ′′(ω0) =
d2ϕ

dω2
|ω0 = {ω

c

d2p

dω2
+

2

c

dp

dω
}|ω0
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=
λ3

2πc2
d2p

dλ2
|λ0

Let us consider propagation of a pulse through some arbitrary optical element which

causes angular dispersion, which we can assume to occur at point O. (Figure 6) The

pulse’s central frequency ω0 goes in thee direction ~r(ω0), with a phase front S ′0. Some

other frequency component as within the pulse bandwidth goes at an angle α with

respect to ω0, with a phase front S ′. Of course, both frequency components have

parallel phase fronts S0, S on the left side.

Figure 6: propagation of a pulse through some arbitrary optical element
which causes angular dispersion at point O.

Consider P0= point of reference ⇒ wavefront S ′ intersects S at P0.

Optical path length OP ′ = p(ω) = p(ω0) cosα ≡ L cosα⇒ ωL
c

cosα(ω)

dϕ

dω
=
L

c
cosα− ωL

c
sinα

dα

dω

d2ϕ

dω2
|ω0 = −L

c
sinα

dα

dω
− L

c
sinα

dα

dω
− ωL

c
cosα(

dα

dω
)2 − ωL

c
sinα

d2α

dω2

= −L
c
{sinα[2

dα

dω
+ ω

d2α

dω2
] + ω cosα(

dα

dω
)2}|ω0

This is the group delay dispersion evaluated at the carrier frequency ω0. Thus
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sinα(ω) and cosα(ω) are evaluated at ω0, so we have α(ω0) = 0⇒ sinα = 0, cosα =1

exactly. (Note that the treatment in Diels +Rudalph 2.6.2 is not quite correct, since

they simply make an approximation sinα ' 0 and cosα ' 1 corresponding to small α

over the pulse bandwidth.)

d2ϕ
dω2 |ω0 = −Lω0

c
(dα
dω
|ω0)

2 (exactly)

⇒ angular dispersion results in GDD.

(note that, the GDD is always negative, since the dispersion comes in as square)

note also GDD∝ L, i.e. the distance from the dispersing optical element.

From the above, we can also obtain the third order phase term:

d3ϕ

dω3
|ω0 = −L

c
{cosα[3(

dα

dω
)2 + 3ω

dα

dω

d2α

dω2
] + sinα[3

d2α

dω2
+ ω

d3α

dω3
− ω(

dα

dω
)3]}|ω0

= −3L

c
[(
dα

dω
)2 + ω

dα

dω

d2α

dω2
]|ω0

Therefore, we have the required phase terms once we know α(ω) foor the specific

optical element desired.

Of course (as we saw with gratings), we do not want to have a beam divergence

associated with the GDD, so we will usually use pairs of dispersive elements.
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