

Our Campus of Cité Descartes

始建于1991年的巴黎东部马恩河谷大学现在已有超过11000名学生,17个研究实验室. UPEMLV是巴黎东部大学的创始成员之一,巴黎东部大学联盟是由许多致力于高等教 育与研究的学院所组成的(路桥学院,ESIEE学院,巴黎第十二大学等)。 Laboratoire de Physique des Matériaux Divisés et des Interfaces (LPMDI)

Elaboration of ZnO Nanowire Arrays and their Applications on Green Energy and Environment

Outline:

Introduction

- Elaboration & Structural characterization
- Electrical measurements
- > Applications

ZnO:

Introduction

- Semiconductor II-VI:
- Wurtzite structured:

a = 0.325 nm et c = 0.512 nm.

Elab. & Charact.

Electrical properties

- Elaboration methods: PVD, CVD, Sol-gel deposition, Electrodeposition, hydrothermal...
- Properties:
 - direct wide bandgap (3.37 eV or 368 nm);
 - large exciton binding energy (60 mV);
 - piezoelectric properties;
 - high isoelectric point (IEP = 9.5);
 - high electrons transfer capacity;
 - biocompatible;
 - high chemical stability;

Applications

Morphologies :

Yamin Leprince-Wang

19-04-2012 Forum on Condensed Matter Physics at PKU, China

Classical three-electrode electrochemical cell for ZnO deposition: thin films & nanowires

Introduc	tion	Elab. & Charact.			lectrical p	Applications		
♦ El	ectrolyte	:						
* 0.1	IM KCI	* 5	mM Z	2nCl ₂	* 5 mM	H ₂ O ₂ (30%)		
♦ Ex	xperimen	tal detail	s:					
> T	Temperature:			T = 70°C.				
> S	 Substrates: Metallic discs, gilded Si, ITO (+) thin films & NW arrays) 							
Polycarbonate membranes, PMMA								
				(→ mi	cro-plots	& single NW	's).	
> C	ounter-ele	ectrode:	Platinu	ım. * \	/ = – 1,5 V	/MSE		

Electrochemical mechanism:

1. The reduction of hydrogen peroxide leads to the formation of hydroxide ions:

 $H_2O_2 + 2e^- \rightarrow 2OH^-$

2. The overall deposition reaction of ZnO in the presence of H_2O_2 can be reasonably written as:

$$Zn^{2+} + H_2O_2 + 2e^- \rightarrow ZnO + H_2O$$

K. Laurent, Y. Leprince-Wang et al. *Thin Solid Films*, 517 (2008) 617-621. K Laurent, Y. Leprince-Wang et al. *J. of Physics D: Applied Physics*, 41(2008) 195410.

Template method:

Introduction

Elab. & Charact.

Electrical properties

Applications

TEM images showing a general morphology of the electrodeposited ZnO nanowires from **M90** type membranes (d ~ 150 nm).

2 um

Y. Leprince-Wang et al. *Microelectronics Journal*, **36** (2005) 625-628.Y. Leprince-Wang, D.P. Yu et al. *Journal of Crystal Growth*, **287** (2006) 89-93.

TEM Grill

Optical lithography

Introduction

Electrical properties

Applications

ZnO nanowire arrays: *(electrodeposition & hydrothermal method)*

Introduction

Electrical properties

1. Electrodeposition of ZnO nanowire arrays

1) Electrodeposition of a seed layer:

Electrolyte: $[ZnCl_2] = 5 \text{ mM}$; [KCI] = 0,1M; and O_2 saturated (at room temperature) $I = -0,15 \text{ mA/cm}^2$ t = 45 min. $\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^ Zn(OH)_2 \rightarrow ZnO + H_2O$

Applications

2) Electrodeposition of the nanowires:

Introduction

Electrolyte: $[ZnCl_2] = 0.5 \text{ mM}$; [KCI] = 0.1 M; and O_2 saturated (at 80°C) * V = -1.5 V_{/SCE} t ~ 2h for ℓ ~1 µm

Applications

Dependence of the ZnO NWs' morphology:

 $[ZnCl_2] \uparrow \rightarrow d \uparrow$

 $\mathsf{Thickness}_{\mathsf{seed \, layer}} \uparrow \, \clubsuit \, \mathsf{d} \uparrow$

 $[\mathsf{KCI}] \uparrow \rightarrow \ell \uparrow \qquad [\mathsf{KCI}] \uparrow \uparrow \rightarrow \mathsf{d} \uparrow$

{T. Brouri, Thesis of Université Paris-Est, May 2011}

Electrical properties

2. Hydrothermal method for ZnO nanowire arrays

1) The seed layer deposition:

Introduction

2) The nanowires growth:

ZnO nanowires synthesis:

Introduction

<u>Solution</u>: 0.025 M Zn(NO₃)₂, 0.025 M HMTA {(CH₂)₆N₄}. <u>Conditions</u>: 90°C, 2 hours → $\ell \sim 0.7 \mu m$.

Excellent homogeneity on large scale.

Well crystallize ZnO & homogeneity in diameter (50-70 nm).

Influence of *pH* value on the nanowires growth р**Н = 7.45** يريدون والمار والفار ويتجاوزه والمتعاصل والمراجات ZnO₍₀₀₀₂₎ pH = 7.29Intensité (u.a.) ZnO_(10T2) ZnO_(10T3) pH = 6.99pH = 6.95pH = 6.90pH = 6.80 mmmmmmm mm non man and and 20 25 30 35 40 45 50 55 60 65 70 75 80 2θ (°) **Narrow window: 6,80 < pH < 7,45**

Yamin Leprince-Wang JCPDS card n°36-1451

Influence of temperature on the nanowires growth

Yamin Leprince-Wang 19-04-2012 Forum on Condensed Matter Physics at PKU, China

Influence of the growth time on the length

Influence of the growth time on the length

Green et al.: phase rapide 11,1 nm/min, phase lente 5,5 nm/min. Measurements: $v \sim 5 - 6$ nm/min.

Influence of the growth time on the diameter

Diamètres constants pour les échantillons plongés directement à température

Electrical properties

XRD measurements:

Introduction

Hydrothermal method

(HR)TEM observations:

Introduction

Electrodeposition

02) (011) (001) • • (010) (000)c - axis

Monocrystalline structure with excellent crystallinity, along c-axis growth.

Electrical properties

Raman & PL measurements:

Introduction

(2) Oxygen vacancy (defects) \nearrow \rightarrow conductivity of ZnO \nearrow .

** K. Laurent, Y. Leprince-Wang et al. Thin Solid Films, 517 (2008) 617-621. *** F. Descremps et al. Physical Review B, 65 (2002) 092101.

* Laser : $\lambda = 515$ nm for Raman $\lambda = 325$ nm for PL

Electrical properties

PL Measurements

V_(solution) = 50mL fixed

Ohmic contact ZnO thin film / Al

Elab. & Charact.

Schottky contact ZnO thin film / Au

Niveau vide

Schottky junction – ZnO nanowires/Au

Introduction

Contact Schottky – ZnO nanowires /Au

Elab. & Charact.

Introduction

Collective measurements on a ZnO nanowire network: Qualitative results

Experimental setup

Understanding the electrical response \rightarrow Three sample categories

Yamin Leprince-Wang 19-04-2012 Forum or

-04-2012 Forum on Condensed Matter Physics at PKU, China

Application 1: *Electric nanogenerator*

Elab. & Charact.

Introduction

(Objective: convert surrounding energy into electrical energy)

Perspectives of nanogenerators for harvesting mechanical energy and potential future applications.

Z. L. Wang "Self-Powered Nanosystems", Adv. Funct. Mater. 2008, 18, 3553–3567.

Electrical properties

Applications

Introduction Elab. & Charact. Electrical properties Applications

Under studding: coupling electro-mechanics properties of ZnO nanowires.

Yamin Leprince-Wang 19-04-2012 Forum on Condensed Matter Physics at PKU, China

State of the art : nanopiezoelectric system

Elab. & Charact.

Introduction

Study of the nanopiezoelectricity (ZL. WANG, Georgia Tech. USA)

1 ZnO nanowire → ~ 10 mV (necessary force: ~ nanoNewton / nanowire)

Electrical properties

ZL Wang, Science (2007)

Applications

Collective signal: ~ 10 mW, ~ 800 nA / ~ 6 mm² 0.5% of the nanowires are active → Control of the network

Application 2 -> Multi-nanostructured Solar Cells

Elab. & Charact.

Electrical properties

Introduction

Applications

Electrodeposition of CdS NPs:

Chemical bath*:

Introduction

- 37cm³ of 1M Cd(Acet)
- 20cm³ of 13M ammonia
- 10cm³ of 7.2M triethanolamine
- 100cm³ of deionized water
- 37cm³ of 2M thiourea

{* Method: Tetsuhiko ISOBE, Materials research bulletin , **30** (1995) 975}

Elab. & Charact.

Homogenous coverage
Nanoparticles ~15-20 nm size

Electrical properties

Applications

Raman & HRTEM characterizations of CdS NPs:

Perspective:

- 1) Chemical bath deposition of PbCdS nanoparticules → large absorption band
- 2) The third step : CuSCN on NPs + ZnO NWs

New Project on Culn(AI)S₂

Applications 3 → Nanostructured gas sensor

ZnO: promising materials for gas sensor. ZnO nanowire arrays: large surface area \rightarrow high detection sensitivity

(b) ³⁰⁰ He Copper plate CO 200 Current (µ A) Η, NO₂ 100 The nanowire sensor device. Exploded view of the sensor showing a ZnO nanowire film as 0-200 300 400 100 500 600 the anode and a Cu plate as the cathode. Breakdown Voltage (V) * L. Liao et al. Nanotechnology 19 (2008) 175501 *I–V* curves for He, NO₂, CO, H₂, air and O₂, showing distinct breakdown voltages.

- * LEPRINCE Yamin (Pr.)
- * CAPOCHICHI Martine (Ing.)
- * BROURI Tayeb (Ph.D, 2007-2011)
- * CESAR-CHAVALIER Clotaire (Ph.D)

- * LEOPOLDES Julien (Assitant Pr.)
- * LAURENT Kevin (Postdoc PKU 2009-2011)
- * BOUCHAIB Salah (Ph.D)
- * CONRAD Guillaume (Ph.D)

Acknowledgement

