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Nonlinear effects in the interference of Bose-Einstein condensates are studied using exact solutions
of the one-dimensional nonlinear Schrödinger equation, which is applicable when the lateral motion
is confined or negligible. With the inverse scattering method, the interference pattern is studied as a
scattering problem with the linear Schrödinger equation, whose potential is profiled by the initial density
distribution of the condensates. Our theory not only provides an analytical framework for quantitative
predictions for the one-dimensional case, it also gives an intuitive understanding of some mysterious
features of the interference patterns observed in experiments and numerical simulations.
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The nonlinear Schrödinger equation has been a para-
digm of theoretical and experimental studies of coherent
nonlinear dynamics [1]. The realization and rapid devel-
opment of Bose-Einstein condensates (BEC) of alkaline
atoms have provided a new stage for practical applications
of this equation [2]. Almost all of these theoretical studies
have been based on numerical solutions, which are neces-
sary for two- and three-dimensional problems and for cases
with external driving forces. On the other hand, there has
been tremendous progress in the past thirty years in de-
veloping analytical methods, such as the inverse scatter-
ing method, for finding exact solutions of one-dimensional
nonlinear systems [3,4]. It remains to be seen how these
analytical results can impact on our understanding of co-
herent dynamics of the alkaline BEC packets.

In this Letter, we apply the inverse scattering method to
the problem of interference of BEC wave packets. The in-
terference of three-dimensional BEC packets was observed
recently [5]; the one-dimensional situation can be achieved
experimentally either by maintaining the lateral confine-
ment of cigar-shaped BEC packets during the interference
process or by using condensates whose lateral dimensions
are large compared with the gap between them such that
there is little lateral expansion before the two BEC pack-
ets merge together. Our theory not only yields analytical
predictions on how interatomic interactions affect the in-
terference fringes for one-dimensional experiments in the
future, it also provides an intuitive understanding of some
mysterious features of the interference patterns observed
in experiment [5] and in numerical simulations [6,7].

The basic idea of the inverse scattering method [3,4]
is to transform a nonlinear problem into a linear scat-
tering problem. In our case, the one-dimensional non-
linear Schrödinger equation is transformed into a linear
Schrödinger scattering problem whose potential is of dou-
ble-barrier shape profiled by the initial density distribution
of BEC packets. We argue that the interference of BEC
packets is a long-time behavior and, therefore, is described
by the asymptotic solution of the nonlinear Schrödinger
equation. This asymptotic solution has an exact form in
0031-9007�00�84(11)�2294(4)$15.00
terms of the reflection coefficient of the linear scattering
problem [8], so we are able to study the interference pat-
tern by calculating the reflection coefficient for the double-
barrier potential.

Theoretical formulation.—Our starting point is the
nonlinear Schrödinger equation or the Gross-Pitaevskii
equation [9], whose numerical simulation has previously
produced good agreement with experimental interference
data [7]. For theoretical exploration beyond the mean field
level, the reader is referred to Refs. [10,11]. In scaled
form, the one-dimensional motion of the condensate wave
function f is governed by

i
≠f

≠t
� 2

1
2

≠2f

≠x2 1 gjfj2f , (1)

where x is measured in units of j � 1 mm, a character-
istic length unit in this type of experiment, t in units of
mj2

h̄ (m is the atomic mass), f in units of the square root
of n0aaa, the maximum density in the initial distribution
of the condensate, and the interaction constant is defined
as g � 4pn0aj2, with a . 0 being the interatomic scat-
tering length. With this choice of units, the unit for mo-
mentum is h̄�mj; the constant g � 5 10 and the time of
flight t � 120 in the experiment of Ref. [5].

In Figs. 1(a)–1(c), we plot the results showing how two
Gaussian wave packets with zero relative phase evolve ac-
cording to Eq. (1). The interference pattern forms as early
as t � 9. After that, jf�x, t�j2 merely expands uniformly
in space and linearly with time, with its basic profile, the
valleys and peaks, remaining unchanged. Note that we
made the choice of g � 2 in Fig. 1, instead of the larger
experimental values, in order to have fewer peaks so that
the structure of the curves can be seen more clearly. With
higher g, the wave packets expand faster and the interfer-
ence pattern settles earlier. So, the time of flight t � 120
in the experiment of Ref. [5] is really a long time as far
as the settlement of the interference pattern is concerned.
With the aid of exact solutions for the one-dimensional
nonlinear Schrödinger equation, we are now able to study
this asymptotic regime of interference analytically.
© 2000 The American Physical Society
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FIG. 1. Evolution of two BECs �g � 2, d0 � 12, s � 1�.
The scaled packets at (a) t � 3, (b) t � 9, and (c) t � 54.
(d) ja�k�j2 in Eq. (4).

The exact solution for the nonlinear Schrödinger
equation (1) can be achieved by the inverse scattering
method [8]. Its central step is to solve an auxiliary linear
scattering problem defined by the following differential
equations:

i
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p
g fc2 �
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2

c1 ,

i
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≠x
2

p
g f�c1 � 2
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2

c2 ,
(2)

with the boundary conditions: c1 ! eikx�2 as x ! 2`

and c2 ! 0 as x ! 1`. Note that the wave function
f�x, t� in the nonlinear problem appears as a scattering
potential in the linear problem. The reflection and trans-
mission coefficients, r�k� and t�k�, are defined as the am-
plitudes in the asymptotic behaviors: c1 ! t�k�eikx�2 as
x ! 1` and c2 ! r�k�e2ikx�2 as x ! 2`. This linear
scattering problem is designed in such a way that, with
f�x, t� evolving with time according to the nonlinear equa-
tion (1), the magnitude of the reflection coefficient, jr�k�j,
is invariant. Our subsequent discussions will only require
the knowledge of jr�k�j, so we can use the initial wave
function f�x, 0�, for the scattering potential.

The long-time asymptotic solution of the nonlinear prob-
lem has an exact form as

f�x, t� �
a� x

t �
p

t
ei�x2�2t�2i2ja�x�t�j2 log�4t� 1 O�t21 logt� ,

(3)

where a�k �
x
t � is determined by r�k�. Because the in-

terference pattern is described completely by the density
distribution jf�x, t�j2, it is sufficient to know the magni-
tude of a�k�, which is given by

ja�k�j2 � 2
1

2pg
log�1 2 jr�k�j2� . (4)

To demonstrate the validity of the above results, we draw
in Fig. 1(d), ja�k�j2 obtained directly from the scattering
problem Eq. (2), and find an excellent agreement with the
quantity tjfj2 shown in Fig. 1(c). This coincidence sug-
gests that ja�k�j2 is the long-time asymptotic momentum
distribution. This relation is also confirmed directly by a
Fourier transform of the wave function (3) with the station-
ary phase method appropriate for long times. This result
states that, as far as long-time distributions are concerned,
the fringe spacing Dx in real space and Dk in momentum
space are simply related by (in physical units)

Dx
t

�
h̄
m

Dk . (5)

Because of this, we will focus on the interference in mo-
mentum space from now on. Very recently, a suggestion
[12] was made to observe the interference in momentum
space with inelastic photon scattering [13].

While the above formulation can deal with arbitrary ini-
tial conditions, we will assume for simplicity that the BEC
packets have a zero relative phase for the rest of our dis-
cussions. The symmetrical distribution of interference pat-
terns in the experiment of Ref. [1] seems to suggest that
this may actually be the case for some reason. In any
case, one can certainly assume a zero relative phase by
considering wave packets split from the same BEC. We
are then able to reformulate the scattering problem into a
linear Schrödinger equation, for which we can utilize all
our physical intuition and mathematical machinery devel-
oped in the learning of basic quantum mechanics. By
defining c � c1 2 ic2, we find

2
d2c

dx2 1 �gf2
0 2

p
g f0

0�c �
k2

4
c . (6)

This is a linear Schrödinger equation with the potential pro-
filed by the initial wave function of the nonlinear problem,
V �x� � gf

2
0 2

p
g f

0
0. The reflection coefficient defined

before can thus be calculated as a standard quantum scat-
tering problem in one-dimension.

Applications and predictions.—Two properties of the
interference pattern can immediately be stated based on
Eq. (4): (i) the interference pattern should be symmetri-
cally distributed; (ii) the envelope of the density distribu-
tion should be lower at higher values of k. The first stems
from the fact that jr�2k�j � jr�k�j for real potentials; the
second is because the transmission is generally easier at
higher energies. These two properties are general and do
not depend on the initial distribution of the BEC packets.

For weak potentials or large momenta, we can calcu-
late the reflection coefficient with the Born approximation.
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The momentum density distribution of the interference pat-
tern is then given by

ja�k�j2 �
jr�k�j2

2gp

�
1

2gpk2

Ç Z
dx�gf2

0 2
p

g f0
0�eikx

Ç2
. (7)

In the limit of g ! 0, we can ignore the first term in the
potential, and an integration by parts then yields the free
particle result that the momentum distribution is that of
the initial state. In particular, if the initial wave function
consists of two Gaussian wave packets, with separation d0
and the same width s, we find that

ja�k�j2 � 4s2 cos2

µ
kd0

2

∂
e2k2s2

, (8)

which describes a uniform interference pattern with period
2p�d0. It is exactly the free particle result obtained in
Refs. [6,7].

The more interesting case is when g is big as in the
experiment of Ref. [5]. In this case, for energies k2

4 over
the peaks of the potential, one can use the WKB method
to calculate the overbarrier reflections, yielding

ja�k�j2�
2

gp
e2�p�k2�42g�s�pg� cos2

Z d0�2

2�d0�2�

3 dx

µ
k2

4
2 V �x�

∂1�2

. (9)

Based on this expression, it is easy to find out that the
fringes �k * 2

p
g � are uniform for large separations of the

two BEC clouds and nonuniform for small separations. It
is also clear from the exponential term, which comes from
the reflection over one peak, that the distribution decays
very fast when the energy k2

4 is higher than the barriers.
Therefore, the dominant part of the interference pattern
lies in the range of k , 2

p
g, corresponding to energies

below the barriers.
Three different cases are shown in the upper panels of

Fig. 2 for the scattering potential V �x� � gf
2
0 2

p
g f

0
0.

In each case the potential has quasibound levels inside
the well. Resonant transmission occurs at these levels,
where r�k� vanishes, which in turn leads to nodes in the
BEC wave function according to Eq. (4). Therefore, by
calculating the energies of these quasibound levels, we
can obtain the positions and spacings of the fringes in the
interference pattern of the BEC wave packets. Figure 2(a)
shows the case of two BEC packets initially not far apart
�d0 � 3.6s�. The potential well can be approximated by
a harmonic potential

V �x� � V0 1
1
2V 00

0 x2, (10)

where V0 is the potential minimum between the walls and
V 00

0 is the curvature of the potential at the minimum. So
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FIG. 2. The potentials, the energy levels, and the levels in k.
Two Gaussian wave packets with (a) small separation, (b) large
separation, and (c) three Gaussian wave packets. The solid level
lines are accurate numerical results while the dotted lines are
analytical results for comparison. Note that the energy levels in
(b) are magnified by a factor of 10; the k level spacing is the
fringe spacing or the interference band in the main text.

the fringe position can be estimated with the energy levels
for this harmonic potential,

k6n � 62
p

En � 62�V0 1 �n 2
1
2 �

q
2V 00

0 �1�2. (11)

We plot them in Fig. 2(a) against the accurate levels, and
see a very good agreement. Therefore, the central fringe
spacing is given by

Dk0 � k1 2 k21 � 4�V0 1

q
V 00

0 �2�1�2, (12)

while the spacings of higher order fringes are given by
Dkn � kn11 2 kn. The resulting fringe positions are
drawn in the lower panel of Fig. 2(a), where we see that
the central band is very wide due to the nonzero potential
floor V0, and other bands are much narrower and close to
uniformly spaced. We can thus understand why a strong
overlap in the initial BEC wave packets can result in the
nonuniform patterns as seen in the experiment [5,14] and
the numerical simulations [7].

As the initial separation becomes larger, the fringes be-
come more uniformly spaced. The case of d0 � 10s is
shown in Fig. 2(b), where we see that the fringes are al-
most uniform, but with a spacing much larger than the free
particle result, which is drawn with the dotted lines on the
right-hand side for comparison. The larger spacing can be
understood from the relation Dk � p�d�, where d� is the
effective width of the well. Near the bottom of the well,
where the levels shown in Fig. 2(b) actually lie, the well
width is shorter than the distance d between the Gaussian
packets by the order of the full width s of the Gaussians
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[6]. This difference eventually becomes negligible for very
large separations, yielding level spacings corresponding to
the free particle results. These results are also in accor-
dance with our physical intuition: with a large initial sepa-
ration, the clouds become dilute and less interacting when
they meet each other, so the fringes become more like the
ones for the noninteracting gas. It is clear now that the uni-
form pattern shown in the right picture of Fig. 2 in Ref. [5]
is due to two factors: the initial large separation and the
fast lateral expansion which helps to reduce the density of
the condensates.

The width of an interference fringe can be obtained from
the linewidth of the corresponding quasibound level, which
has a finite lifetime due to tunneling through the potential
barriers. Generally speaking, the level width increases
with energy, implying thicker fringes on the sides than
those near the center. More specifically, the ratio of the
level width to the level spacing can be estimated using the
WKB method,

dkn

Dkn
�

dEn

DEn
� 2e22

p
g2Enw�En�, (13)

where w�En� is the width of a barrier at the level energy.
Because of the exponential dependence, the fringe widths
can be extremely narrow for large g and thick wave pack-
ets, as is evident from Fig. 1(d). The observation of such
narrow widths is a challenge to the experimentalists; the
lack of very good optical resolution and system stability
will result in the smearing of these narrow valleys in the
density distribution and reduced contrast or visibility of the
fringes. On the other hand, the development of the narrow
valleys seems to require very long times. For the case
shown in Fig. 1, one can still see reasonably wide valleys
at time t � 54 as in Fig. 1(c). There is not a good theory
for the time dependence of the widths, although a Heis-
senberg uncertainty width seems to give the right order of
magnitude.

Finally, we would like to mention that we can predict
intuitively within this framework the interference patterns
for more than two BEC packets. In Fig. 2(c), we plot the
case where there are three BEC packets and see the pairing
of fringes appearing in the interference. Also. when it is
possible to arrange a periodic array of BEC clouds, we may
expect to see a “band structure” in the interference pattern.
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