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Abstract
Wepresent a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles.We call it
Lorentz quantummechanics because the dynamics is a continuous complex Lorentz transformation in
complexMinkowski space. In contrast, in usual quantummechanics, the dynamics is the unitary
transformation inHilbert space. Inour Lorentz quantummechanics, three types of state exist: space-like,
light-like and time-like. Fundamental aspects are explored in parallel to the usual quantummechanics,
such as amatrix formof a Lorentz transformation, and the constructionof Pauli-likematrices for spinors.
We also investigate the adiabatic evolution in thesemechanics, aswell as the associatedBerry curvature
andChernnumber. Three typical physical systems,where bosonic Bogoliubov quasi-particles and their
Lorentz quantumdynamics can arise, are presented. They are a one-dimensional fermiongas, Bose–
Einstein condensate (or superfluid), andone-dimensional antiferromagnet.

1. Introduction

Bosonic Bogoliubov quasiparticles arise inmany different physical systems [1, 2]. They have been studied
extensively in condensedmatter physics for their static properties, such as dispersion, and in particular, their
relation to superfluidity [3–5]. Inspired partly by thework in [6], where the dynamics of Bogoliubov
quasiparticles in a superfluidwith a vortex is studied, we present here a general theoretical framework for such
dynamics. As the bosonic Bogoliubov operator is non-Hermitian, wefind that the dynamics is a continuous
Lorentz transformation of a state in complexMinkowski space. In contrast, the usual quantumdynamics is a
continuous unitary transformation of a state inHilbert space. For this reason, we call the dynamics of bosonic
Bogoliubov quasiparticles Lorentz quantummechanics.

In Lorentz quantummechanics, wefind that the interval of a state is conserved and therefore the complex
Minkowski space has three subspaces: space-like, light-like, and time-like, which are invariant during the
dynamic evolution. In this workwe focus on the 1, 1( )-type spinor, the simplest Lorentz spinor, and use this
example to explore inwhichways the Lorentz quantummechanics are similar to, and different from, the
conventional quantummechanics. In particular, we construct thematrix representing the Lorentz
transformation of complex vectors, and the Lorentz counterpart of the standard Paulimatrices. The Berry phase
is also investigated in the context of Lorentz quantummechanics and it is found to be quite different from the
Berry phase in usual quantummechanics.

In the end, we give three specific physical systems: the spinwave excitations in a one-dimensional (1D)
antiferromagnetic system, the phonon excitations on top of a vortex in the Bose–Einstein condensate (BEC), and
a 1D fermion gas at low temperatures, where Lorentz quantummechanics can arise.We use these systems to
further illustrate our general results. In particular, with the antiferromagnetic systemwe point out explicitly how
spin–orbit coupling can arise in Lorentz quantummechanics.

We note that the non-HermitianHamiltonian has been extensively studied in the context of PT-symmetric
quantummechanics, where the spectrum (eigenvalue) of non-Hermitian operator is proved to be real [7]. The
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PT-symmetric structure has found extensive applications in phonon-laser (coupled-resonator) systems, where
giant nonlinearity arises in the vicinity of phase transition between PT-symmetric phase and broken-PT phase,
resulting in enhancedmechanical sensitivity [8], optical intensity [9], controllable chaos [10] and
optomechanically-induced transparency [11], as well as the phonon-rachet effect [12]. The geometric phase of
PT-symmetric quantummechanics [13] and the stability of driving non-Hermitian systemhas also been studied
[14]. The bosonic Bogoliubov operator studied here stands for a class of generalized PT-symmetricHamiltonian
[15], ormore precisely, the anti-PTHamiltonian [16], which can be realized experimentally bymaking use of
refractive indices in optical settings [16, 17]. It will be interesting to examine the general theoretical framework
of these PT-symmetric quantummechanics in the future.

2. Basic structures of Lorentz quantummechanics

The Lorentz quantummechanics is described by the following dynamical equation
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where H H= † is aHermitianmatrix while m n,s is given by

diag 1, 1, 1 , 1, 1, 1 . 2m n
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Equations of this type are usually called Bogoliubov-deGennes (BdG) equations and are obeyed by bosonic
quasi-particles inmany different physical systems (see section 4). For simplicity, we use the case 1,1s to explore
the basic structures of the Lorentz quantummechanics as generalization to m n,s is straightforward.

2.1. Complex Lorentz transformation and complexMinkowski space
The BdG equation for spinor (1, 1) is
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Here a(t) and b(t) are the standard bosonic Bogoliubov amplitudes, H H= † is aHermitianmatrix, and

z1,1s s= is the familiar Paulimatrix in the z direction, i.e.

diag 1, 1 1 0
0 1

. 41,1s = - =
-( ){ } ( )

The H1,1s as the generator of the dynamics for spinor 1, 1( ) is an analogue of theHamiltonian in the
Schrödinger picture. Different from theHamiltonian, though, H1,1s is notHermitian; it generates complex
Lorentz transformation in complexMinkowski space aswe shall see.

For an arbitrary initial state a b0 0 , 0 Ty ñ =∣ ( ) [ ( ) ( )] , thewavefunction t a t b t, Ty ñ =∣ ( ) [ ( ) ( )] at times t 0>
can be solved formally from equation (3) as

t t, 0 0 . 5y yñ = ñ∣ ( ) ( )∣ ( ) ( )

Here t , 0( ) is the evolution operator defined by

t, 0 e . 6Hti 1,1 = s-( ) ( )

The goal of this section is to show that the operator t , 0( ) defined in equation (6) generates a complex Lorentz—
instead of a unitary-evolution of ty ñ∣ ( ) . In particular, defining the interval for a Lorentz spinor

a b a b a b a bIn , , , , 7T T
1,1

2 2* * s= = -(( ) ) ( ) ( ) ∣ ∣ ∣ ∣ ( )

weprove below that the interval is conserved under the evolution generated by t , 0( ), i.e.

a t b t a b0 0 . 82 2 2 2- = -∣ ( )∣ ∣ ( )∣ ∣ ( )∣ ∣ ( )∣ ( )

For the above purpose, wefirst establish the following relation

. 91,1 1,1 s s= ( )†

Expanding 1,1s and 1
1,1 s-( )† in Taylor series, and noting 11,1 1,1s s = , the nth term in the expansions of both

1,1s and 1
1,1 s-( )† are of the form
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This readily gives
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fromwhich equation (9) ensues. Hence, by virtue of equation (9), we obtain

t t 0 0 , 121,1 1,1y s y y s yá ñ = á ñ( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )

and thus equation (8). Similarly, we can show that 1  ¹† and t ty yá ñ( )∣ ( ) is not conserved during the
dynamical evolution.

It is clear from the above results that the vector space spanned by states ty ñ∣ ( ) is not aHilbert space and the
evolution operator  is not a unitary transformation. Due to itsmathematical similarity to the Lorentz
transformation inMinkowski space, we call the vector space spanned by states ty ñ∣ ( ) complexMinkowski space
and any operator satisfying equation (9) Lorentz transformation. For the 1, 1( )-spinor, the generalmatrix form
of the Lorentz transformation is

, 13
*
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To avoid any confusion, we reiterate that our Lorentz transformation is amathematical generalization of the
Lorentz transformation of special relativity to complex numbers. Physically, they are very different; our Lorentz
transformation operates on states of bosonic Bogoliubov quasiparticles which form a complexMinkowski space;
the Lorentz transformation in special relativity operates on space-timewhich is a realMinkowski space.

As the interval defined in equation (8) does not change under Lorentz transformation, the complex
Minkowski space where the states of bosonic Bogoliubov quasiparticles reside in has three subspaces up to the
normalization constant, which are defined by a b a bIn , 0T 2 2= - >(( ) ) ∣ ∣ ∣ ∣ , a b a bIn , 0T 2 2= - =(( ) ) ∣ ∣ ∣ ∣
and a b a bIn , 0T 2 2= - <(( ) ) ∣ ∣ ∣ ∣ . To set the convention, we call them space-like, light-like, and time-like,
respectively. Physically, if the space-like states with a b 02 2- >∣ ∣ ∣ ∣ describe bosonic Bogoliubov quasiparticles,
then the time-like states with a b 02 2- <∣ ∣ ∣ ∣ describe the corresponding anti-particles [5].

We thus conclude that the dynamical evolution generated by t , 0( ) conserves the interval (see
equation (8)), and therefore, is a continuous complex Lorentz transformation in complexMinkowski space.

Before we proceed to explore other properties of this Lorentz quantumdynamics, we take a sidestep to point
out that the BdG equation is a special class of PT-symmetric quantummechanics [15, 18–21]. The general form
of two-mode PT-symmetricHamiltonian has beenwritten as [15, 18–21]

H
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where ò,μ, ν, γ, θ andj are real parameters. In fact, bothHermitianHamiltonianH andBdGHamiltonian H1,1s
are special cases of the PT-symmetricHamiltonian (15). It follows from (15) that the two-mode BdG
Hamiltonian H1,1s recovers fromHPTwhen 0 = , N2q p= and N2 ;j p= while theHermitianHamiltonian
H recovers when 0m n= = .

2.2. Eigen-energies and eigenstates
Although the H1,1s is notHermitian, under certain conditions, it can admit real eigenvalues—which are
relevant for physical processes.Wewrite H1,1s in terms of three basicmatrices as (dropping the term involving
the identitymatrix)

H m m m0 1
1 0

0 i
i 0

1 0
0 1

, 161,1 1 2 3s =
-

+ +
-( )( ) ( ) ( )

where the parametersmi (i 1, 2, 3= ) are real. The eigen-energies are the roots of the following equation
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It is clear that the eigenvalues are real provided the condition
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is satisfied. In this work, we shall restrict ourselves to this physically relevant regime of real-eigenvalues in the
parameter domain specified by m m m, ,1 2 3( ), andwe denote the two real eigenvalues asE1 andE2, with the
corresponding eigenstates labeled as 1ñ∣ and 2ñ∣ , respectively.

Two facts are clear from equation (17): (i) in the parameter space m m m, ,1 2 3( ), the two eigenstates 1ñ∣ and 2ñ∣
exhibit degeneracies on a circular cone (see figure 1), which resembles the light-cone in special relativity. This is
inmarked contrast to a unitary spinor, where the degeneracy occurs only at an isolated point; (ii) unlike a unitary
spinorwhere the constant-energy surfaces are elliptic surfaces, both eigenstates of H1,1s display hyperbolic
constant-energy surfaces (see figure 2).

We nowdescribe the basic properties of the eigenstates associatedwith the operator H1,1s . They are
solutions to the following eigen-equations

H E1 1 , 191,1 1s ñ = ñ∣ ∣ ( )

H E2 2 . 201,1 2s ñ = ñ∣ ∣ ( )

Keeping inmind that only real eigenvalues are considered, for E E E1 2 2*¹ = , we have

2 1 0. 211,1sá ñ =∣ ∣ ( )

It can be checked that the two eigenstates of H1,1s can always be specifically expressed as

u
v

v
u

1 ; 2 . 22*
*

ñ = ñ = ⎜ ⎟⎛
⎝

⎞
⎠( )∣ ∣ ( )

Thismeans that if 1ñ∣ is space-like then 2ñ∣ is time-like or vice versa.
In the energy representation defined in terms of 1ñ∣ and 2ñ∣ , a time-evolved state t a t b t, Ty ñ =∣ ( ) [ ( ) ( )] (see

equation (3)) can bewritten as

Figure 1.The degeneracy regime of Lorentz spinor parameterized bym1,m2 andm3 as in equation (16) forms the surface of a cone. As
will be discussed in section 3, the charge (monopole) for the Berry curvature (monopole) is at the tip of the cone rather than
distributing over thewhole degeneracy cone.

Figure 2. Illustration of the constant-energy surfaces of BdG equation parameterized bym1,m2 andm3. The arrows indicate the
directions of increasing (decreasing) of energy for state 1ñ∣ ( 2ñ∣ ). On the cone’s surface, the two eigenstates are degenerate. Because the
surfaces assume the axial symmetry about them3 axis, the two-dimensional plot is depicted for clarity.
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In transforming ty ñ∣ ( ) from the Bogoliubov representation to the energy representation, the interval of the
Lorentz spinor is preserved, i.e. it is a complex Lorentz transformation. To see this, using equation (21), wefind
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By further assuming a gauge for Lorentz-like normalization, i.e.
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we obtain from (24) that
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meaning the interval is conserved for the above representation transformation.
Thenormalization condition u v 12 2- =∣ ∣ ∣ ∣ is different from the eigenstates of a conventional unitary spinor.

In fact, if onenaively enforce the unitary gauge on equation (22), say, u v 12 2+ =∣ ∣ ∣ ∣ ,unphysical consequences
would ensue; the time-evolvedwavefunction in the original Bogoliubov representation a b, Tyñ =[∣ ( ) ]couldnot
maintain its ordinary amplitude, such that a t b t 12 2+ ¹∣ ( )∣ ∣ ( )∣ for t 0> , and, in particular, the amplitude in
different representationwould take different value, e.g. c c a t b t1

2
2

2 2 2+ ¹ +∣ ∣ ∣ ∣ ∣ ( )∣ ∣ ( )∣ , which canbe easily
inferred fromequation (23).

In general, when H1,1s takes the form (16)with m 03 = , it exhibits two light-like eigenvectors; whereas,
when m 03 ¹ , there are one space-like and one time-like eigenvectors. Thus, in the physically relevant regime
m m m3

2
1
2

2
2 + as considered here, wefind 1ñ∣ is space-like and 2ñ∣ time-like. As a result, a light-like vector can

be formed from a superposition of two eigenvectors with equal weight, i.e. c c a b 01
2

2
2 2 2- = - =∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ .

2.3. Representation transformation and physicalmeaning of thewavefunction
In quantummechanics, the change fromone representation to another (or fromone basis to another) is given by
a unitarymatrix. In Lorentz quantummechanics, the representation transformation

27y y yñ  ¢ñ = ñ∣ ∣ ∣ ( )L

is facilitated by Lorentzmatrix L in equation (13). Correspondingly, an operatorK transforms as

K K K . 281 ¢ = - ( )L L

Note that, since L is not a unitarymatrix, we have 1 ¹- †L L .
As an example, we consider the transformation from the Bogoliubov representation to the energy

representation as described earlier. In this case, the eigenstates 1ñ∣ and 2ñ∣ transform as
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Obviously, as we have proven, the intervalmust be conserved, i.e., u v 1 0 12 2 2 2- = - =∣ ∣ ∣ ∣ ,
v u 0 1 12 2 2 2* *- = - = -∣ ∣ ∣ ∣ . In addition, the bosonic Bogoliubov operator transforms as,

H H
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This special Lorentz transformation from the original representation to the energy representation is just the
well-knownBogoliubov transformation for bosons [5, 22, 23].

In light of the conservation of interval—rather than norm—of the state vector under transformations, a
question immediately arises as towhether, or towhat extent, thewavefunction in the context of Lorentz
quantummechanics still affords the physical interpretation as the probability wave? Indeed, in the energy
representation, see equation (23), it is clear that c1 2

2∣ ∣( ) , with c c 11
2

2
2+ =∣ ∣ ∣ ∣ , can be interpreted as the

probability offinding the spinor in the eigenstate 1 2 ñ∣ ( ) , i.e., a wavefunction c c1 21 2ñ + ñ∣ ∣ still describes a
probability wave.However, in the Bogoliubov representation, the interpretation of a wavefunction as the
probability wave is no longer physicallymeaningful. For example, consider the eigenstate u v1 , Tñ =∣ ( ) , which is
usually generated from creating a pair of Bogoliubov quasiparticles in the ground state of the system. Yet, u 2∣ ∣
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and v 2∣ ∣ cannot represent the probabilities in the Bogoliubov basis; the Bogoliubov basis is not a set of
orthonormal basis (see section 4 for concrete examples), and therefore, instead of u v 12 2+ =∣ ∣ ∣ ∣ , the
convention u v 12 2- =∣ ∣ ∣ ∣ must be taken.

2.4. Completeness of eigenvectors
Based on equation (22) (see also equations (21) and (25)), the completeness of eigenvectors in the energy
representation now takes a different form compared to the unitary case, reading

j j 1, 33
j

1,1sñá =⨆∣ ∣ ( )

or, equivalently,

j j 1. 34
j

1,1s ñá =⨆∣ ∣ ( )

Here, the notation⨆j [for 1 1+( )-mode] is defined by

j j 1 1 2 2 . 35
j

ñá = ñá - ñá⨆∣ ∣ ∣ ∣ ∣ ∣ ( )

It can easily be found that, ensured by the property of Lorentzmatrix 1,1 1,1s s=†L L , the completeness
expression (33) (or (34)) remains in any other representation.

2.5. Analogue of Paulimatrices
In analogywith the conventional spinor that is acted by the basic operators known as Paulimatrices, it is natural
to ask, for the Lorentz spinor, if similarmatrices can be constructed. Such analogue of the Paulimatrices,
denoted by it (i 1, 2, 3= ), is required to fulfill the following conditions: (i) any operator H1,1s , whenwritten in
terms of it (dropping the term involving identitymatrix), i.e.

H n n n , 361,1 1 1 2 2 3 3s t t t= + + ( )

must have real-number components ni; (ii) thematrices it (i 1, 2, 3= ) should have the same real eigenvalues,
say,±1, and can transform into each other via Lorentz transformation (see equation (28)).

Based on (i) and (ii), we see that thematrices as appeared in equation (16)do not represent the analogue of
the Paulimatrix for the Lorentz spinor: while they satisfy the requirement (i), the condition (ii) is violated.
Instead, we consider the following constructions:
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It is easy to check that it in equation (37) satisfy both requirements (i) and (ii). In particular, the transformation
between 1t and 3t is explicitly found to be

, 381 3
1t t= - ( )L L

where L is of the form (13)with i2 1

2
z = + and i2 1

2
h = - - , and that between 2t and 3t is given by

, 392 3
1t t= - ( )L L

for Lwith e2 1

2
i 4z = + - p
and e2 1

2
i 4h = - - p
.

2.6.Heisenberg picture
The current Lorentz evolution is in fact defined in the analogue of Schrödinger picture (denoted by subscript s),
i.e. any physical operator keeps constant while thewavefunction undergoes Lorentz evolution. In analogywith
the conventional spinor, the Lorentz quantummechanics can also be expressed in the analogue ofHeisenberg
picture (denoted by subscript h). The relations of an operator and the state yñ∣ between the two pictures are

t e e , 40h
Ht

s
Hti i1,1 1,1 = s s-( ) ( )

te , 41h
Ht

s
i 1,1y yñ = ñs∣ ∣ ( ) ( )

where hyñ∣ keeps constant but t h( ) satisfies the analogue ofHeisenberg equation,

t

t
H ti , , 42h

h1,1 
s

¶
¶

=
( ) [ ( ) ] ( )

with H t, h1,1 s[ ( ) ]being the commutator between H1,1s and t h( ) .
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2.7. Generalization tomulti-mode
In this section, we extend the above formulations for the 1,1s Lorentz spinor to the case ofmulti-mode spinor
with m n,s . The operator Hm n,s hasm+n energy eigenstates, denoted by 1ñ∣ , 2ñ∣ ,K, m n+ ñ∣ . Defining the
interval of a m n+( )-modewavefunction a a a, , , m n

T
1 2yñ = ¼ +∣ ( ) as

a aIn . 43m n
j

m

j
j m

m n

j,
1

2

1

2å åy y s yñ = á ñ = -
= = +

+

(∣ ) ∣ ∣ ∣ ∣ ∣ ∣ ( )

It is easy to see that the intervals of the eigenstates are

j j m

j j m m m n

In 1 for 1, 2, ,

In 1 for 1, 2, . 44

ñ = = ¼
ñ = - = + + ¼ +

(∣ )
(∣ ) ( )

In addition, the orthogonal condition for two non-degenerate eigenstates is derived as

j k j k0, for , 45m n,sá ñ = ¹∣ ∣ ( )

generalizing equation (21) for the 1, 1( )-mode. Using equations (44) and (45), the completeness of eigenvectors
can be expressed as

j j 1, 46
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m n,sñá =⨆∣ ∣ ( )
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j j 1, 47m n
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with the symbol⨆j for (m, n)-mode defined as
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3. Adiabaticity and geometric phase

3.1. Adiabatic theorem
Consider a 1, 1( )-spinor described by the operator H R1,1s ( ), which depends on a set of system’s parameter R.
Suppose the spinor is initially in an eigenstate, say 1ñ∣ , before the parameter R undergoes a sufficiently slow
variation, thus driving an adiabatic evolution for the Lorentz spinor. The relevantmatrix element capturing the

slowly varying time-dependent perturbation can be evaluated as, by acting the gradient operator
R

 º ¶
¶

on the

equation (19) and using equation (20),

H

E E

H

E E
2 1

2 1 2 1
. 491,1

1 2 1 2*
sá  ñ =

á  ñ
-

=
á  ñ

-
∣ ∣ ∣ ∣ ∣ ∣ ( )

Here, the last equality is ensured by the real eigenvalues in the considered parameter regimes, togetherwith the
condition E E1 2¹ .

We see that the relation (49), except for an additional 1,1s , is identical with that in unitary quantum
mechanics [24]. This allows us to generalize the familiar adiabatic theorem to the context of Lorentz quantum
mechanics; starting from an initial eigenstate R1 ñ∣ ( ) ( R2 ñ∣ ( ) ), the systemwill always be constrained in this
instantaneous eigenstate so long as R is swept slowly enough in the parameter space. (A rigorous proof would be
similar to that in the conventional quantummechanics [24, 25], and therefore, herewe shall leave out the
detailed procedure.)

3.2. Analogue of Berry phase
In conventional quantummechanics, it is well-known that an eigen-energy state undergoing an adiabatic
evolutionwill pick up a Berry phase [26], when a slowly varying systemparameter R realizes a loop in the
parameter space.Herewe show that in the context of Lorentz quantummechanics, a Lorentz counterpart of the
Berry phasewill similarly arise.

The time evolution of an instantaneous eigenstate, which is parametrically dependent on R, can be
written as

m e e , 50i i
Em tR d

yñ = ñ b- ò
∣ ∣ ( )

( )

withm= 1, 2.Here, E tR dm ò- ( ) denotes the dynamical phase andβ the geometric phase. Substituting
equation (50) into equation (3), wefind
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R R

d

d
i 1 1 ; 511

1,1
b

s= á
¶
¶

ñ∣ ∣ ( )

and

R R

d

d
i 2 2 . 522

1,1
b

s= - á
¶
¶

ñ∣ ∣ ( )

From equations (51) and (52), we can readily read off the Berry connections as

A i 1 1 , 531 1,1s= á  ñ∣ ∣ ( )
A i 2 2 . 542 1,1s= - á  ñ∣ ∣ ( )

Equations (53) and (54) show that the Berry connection in the Lorentz quantummechanics ismodified from

the conventional one, where the Berry connection is given by m mi
R

á ñ¶
¶

∣ ∣ .Will suchmodifications give rise to a

differentmonopole structure for the Berry curvature?Or, will themonopole in the Lorentzmechanics still occur
at the degeneracy point (where E E1 2= )? To address these questions, we now calculate the Berry curvature
B A=  ´ .Without loss of generality, we take the eigenvector 1ñ∣ for concrete calculations.

Our starting point is the identity 1 1 11,1sá ñ =∣ ∣ . By acting∇ on both sides, we obtain

1 1 1 1 0. 551,1 1,1 *s sá  ñ + á  ñ =∣ ∣ ∣ ∣ ( )

This indicates that 1 11,1sá  ñ∣ ∣ is purely imaginary (A1 is real). Hence, B1 can be evaluated as

j jB A I 1 1 , 56m
j

1 1 1,1 1,1s s=  ´ = - á ñá ´  ñ⨆ ∣ ∣ ∣ ∣ ( )

where Im represents the imaginary part. In deriving equation (56), we have used the completeness relation (33)
and the following relation

b b b, 57m m m ´ =  ´ +  ´( ) ( )

valid for arbitrary scalarμ and vector b.
According to equation (49), B1 in equation (56) is well defined provided E E1 2¹ , such that themonopole is

expected to be absent in this case. To rigorously establish this, let us calculate the divergence of the Berry
curvature, i.e. B1 · . Introducing an auxiliary operator

j jF i , 58
j

1,1 1,1s s= -  ñá⨆∣ ∣ ( )

which isHermitian, F F= †, as ensured by the completeness relation (33), we have

j j

j j

j j

F

F

F F

F F

i

i

i

i . 59

j

j

1,1

1,1 1,1

1,1

s
s s

s

 ñ= ñ
 ´ =-  ñ ´ á

=- ñ ´ á

= - ´

∣ ∣
⨆∣ ∣

⨆ ∣ ∣

( )

In deriving the above, we have used equation (57). Further noting that

j k j j j k j kFi , 60
j

1,1 1,1 1,1s s sá ñ = á  ¢ñá ¢ ñ = á  ñ
¢

∣ ∣ ⨆ ∣ ∣ ∣ ∣ ∣ ∣ ( )

the Berry curvature can be expressed in terms of F as

j jB F F

F F

I 1 1

I 1 1 . 61

m
j

m

1

1,1s

=- á ñ ´ á ñ

= - á ´ ñ

⨆ ∣ ∣ ∣ ∣

∣ ∣ ( )

Finally, by virtue of F ´ in equation (59), we find

B F F F F

F F

F F F F F F

F F F F

I 1 1 1 1

1 1

I i 1 1 i 1 1

1 1 1 1

0. 62

m

m

1 1,1 1,1

1,1

1,1 1,1 1,1 1,1

1,1 1,1

s s
s

s s s s
s s

 ⋅ = - á ⋅ ´ ñ + á ´ ⋅  ñ
+ á  ⋅ ´ ñ

= - - á ⋅ ´ ñ + á ´ ⋅ ñ
+ á  ´ ⋅ ñ - á ⋅  ´ ñ

=

[ ∣ ( )∣ ∣( ) ∣
∣ ( )∣ ]

[ ∣ ( )∣ ∣( ) ∣
∣( ) ∣ ∣ ( )∣ ]

( )

Therefore, as expected, themonopole in the Lorentz quantummechanics can only appear in the degenerate
regimewhere B1diverges, similar as the conventional unitary quantummechanics.

Next, searching for themonopole, we focus on the degeneracy regime in the parameter space defined by
m m m, ,1 2 3( ), which, as shown in figure 1, forms a circular cone. There, imagine the path of m m mR , ,1 2 3= ( )
realizes a loop in the vicinity of the cone’s surface. In this case, the instantaneous eigenstate, say, R1 ñ∣ ( ) , is
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expected to vary in a back-and-forthmanner (dropping the overall phases including both the dynamical and
Berry phase). This is because the instantaneous eigenstate, apart from an overall phase, is always the same along
any straight line emanating from the origin. As a result, the integration of A1 along this loop vanishes,meaning
there is no charge of the Berry curvature on the cone’s surface, even though it is in the degeneracy regime.

We thus conclude that—just as in the case of unitary spinor—the charge, if exists, can only be distributed on
the isolated points, i.e., the originalmonopoleO, in m m mR , ,1 2 3= ( ) space. However, different fromunitary
spinor, themagnetic flux does not uniformly emanate from themonopoleO to the parameter space, instead, it
emanates only to the region in the cone (more closer to them3 axis). In addition, even in this region, the
magnetic flux is not uniformly distributed. Specifically, by evaluating the geometric phase along a loop
perpendicular to them3 axis, we canfind the distribution of themagnetic flux density per solid angle as a function
of the angle θ fromm3 axis, i.e.,

1 tan

2 1 tan
, 63

2 3
2

2 3
2

r
q

q
=

+

-
 ( )

( )
( )

with- + associatedwith the state 1ñ∣ ( 2ñ∣ ). Note that the flux density is proportional to the Berry curvature,
which acts as amagnetic field, whosemagnitude according to equation (63) increases when approaching the
cone. Right on the surface of the cone, where

4
q  p , themagnetic field diverges. Outside the cone, on the other

hand, the eigenvalue becomes complex such that the notion of adiabatic evolution and geometric phase become
meaningless, i.e. there is nomagnetic field emanating outside the cone from themonopoleO. Again, due to the
aforementioned fact that the instantaneous eigenstate (apart from an overall phase) remains the same along any
straight line emanating from the origin, we expect all themagnetic field fluxes to be described by straight lines
(see figure 3).

Alternatively, we canwrite H1,1s in terms of the analogues of Pauli’smatrices it (see equation (36)), which is
thenmapped onto a vector n n n, ,1 2 3( ) in the parameter space. However, this equivalent kind of decomposition
will not contribute anything butmodify the slope of Berry curvature q q ¢ ( Ctan 1q =( ) , while

Ctan 1 2q¢ = -( ) ( ), withC being any constant).

3.3. Chern number
TheChern number—which reflects the totalmagnetic charge contained by themonopole onO—can be
calculated from equation (63) as,

, 64n = ¥ ( )

with- + for the state 1ñ∣ ( 2ñ∣ ). Hence, the Lorentz spinor not only has distinct distribution of themagnetic flux
compared to the unitary spinor, both also possesses unexpectedly the qualitatively different Chern number
which is divergent.

Figure 3. Illustration of the analytic result given by equation (63) for the distribution of strength of Berry curvature (magneticfield) for
instantaneous eigenstate 2ñ∣ . For the state 1ñ∣ , everything is the same except that the direction of Berry curvature is reversed, whichwe
drop for clarity. Themagnetic fluxes are always straight lines which emanate from the originO (the tip of the cone) in m m m, ,1 2 3( )
space as parameterized in equation (16). θ introduced in equation (63) is the angle spanned bym3 axis and direction of Berry curvature
under study. There is nomagnetic flux outside of the cone, in the cone themagneticfield becomes stronger as approaching the cone’s
surface and tends to infinity on the surface. Because theflux density assumes the axial symmetry about them3 axis, the two
dimensional plot is depicted for clarity.
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4. Physical examples

In previous sections, we have developed and studied the Lorentz quantummechanics for the simplest Lorentz
spinor. Such a Lorentz spinor can arise in physical systems containing bosonic Bogoliubov quasiparticles, for
example, in BECs [5]. Specifically, we illustrate our study of Lorentz quantummechanics by investigating a 1D
fermion gas at low temperatures, phonon excitations on top of a vortex in the BEC, and spinwave excitations in
a 1D antiferromagnetic system.

4.1.One-dimensional Fermi gas
As thefirst illustrative example, we investigate the fermion excitations in a 1D fermion gas at low temperatures.
Since excitations dominantly occur for fermions near the Fermi surface (note at 1D, the Fermi surface shrinks to
the left (L) and right (R) Fermi points), the correspondingHamiltonian can then bewritten as [2]

H a v qa
N

g g
1

2
. 65

s R L q
sq F sq s sq s q sq s qF

,
4 2å å k r r r r= + +

=
- -( ) ( )†

¯

Here, the operator asq
† (asq) creates (annihilates) an excited fermion near the Fermi point (s R, L= )with

momentum q (measuredwith respect to the ground state value). In addition, 1, 1sk = - for s R L= ,
s L R=¯ , vF labels the Fermi velocity, and a asq k sk q skr = å +

† is the density operator in themomentum space
representation. Inwriting down equation (65), we have taken into account the interactions between two
fermions. Specifically, g2 denotes the strength of interaction between two fermions near opposite Fermi points
(i.e. q k2 F ), while g4 for those close to the same Fermi point (i.e. q 0 ).

Let 0ñ∣ denote the state of perfect Fermi sphere (a Fermi line in 1D case). A generic state describing density
fluctuations near the Fermi points can then bewritten in terms of a pseduo-spinor as

a
b

a
lq

b
lq

1 2 2
0 , 66Lq Rqr

p
r

p
rº + ñ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ∣ ( )

where l is the size of the system. As discussed in [2], the density operators sqr can be effectively treated as bosonic
operators within the approximation

, 0 , 0 . 67sq s q sq s qr r r rá ñ¢ ¢ ¢ ¢[ ] [ ]∣ ( )

By assuming equation (67), it is found that equation (66) represents a Lorentz spinorwhose dynamics is
governed by the BdG equation below

t

a
b

q
v

v

a
b

i
d

d
. 68

F
g g

g
F

g1,1
2 2

2 2

4 2

2 4
 s=

+

+
p p

p p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ( )

The generator H1,1s of the dynamics in equation (68), whenwritten in formof equation (16), corresponds
to m g q 21 2 p= ( ), m 02 = and m v q g q2F3 4 p= + ( ) . Thus, when vF

g g

2 2
4 2+
p p

(see equation (18)), the
H1,1s exhibits real eigenvalues, and has space-like and a time-like eigenvectors. Due to m 02 = , as illustrated in

figure 3, there is nomagnetic flux penetrating a loop in the plane defined by m m,1 3( ). As a result, the Berry phase
picked up by the eigenstate, say R1 ñ∣ ( ) , is always zerowhen R varies along a loop in the parameter space of
m m,1 3( ). According to our theory, it is impossible to implement a geometric force (vector potential or artificial
magnetic field) to any fermions in the 1DFermi gas.Wemust search for other intriguing systems to implement
an artificialmagnetic field. Below is an example.

4.2. Phonon excitations on top of aBose–Einstein condensate vortex
The above example shows that the existence of a non-zero Berry phase requires H1,1s —whenwritten in formof
(16)—to contain a complex part, i.e. m 02 ¹ . Below, we demonstrate that this can be realized in the dynamics of
phonons excited on top of a vortex in a BEC.

Following [6], we assume the phononwave packet has a narrowwidth smaller than all the relevant length
scales associatedwith slowly varying potentials (e.g. trapping potential). The corresponding effective BdG
equation can be derived as

t

a
b

H H

H H

a
b

i
d

d

e

e
, 69

r

r1,1
2

2i

2
2i

 s=
a

a
+

-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( )

( )
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where H gn rc2 = ( ) and

H gn V
q

r r r q
2

2 . 70c c c

2

m W= + + - ´ ( ) ( ) · ( ) ( )

Here, rc labels the coordinate of the vortex center, g is the interatomic coupling constant,V rc( ) is the trapping
potential of BEC, andW is the rotating frequency of thewhole system. Furthermore, n rc( ) and rca( ) denote the
particle density and phase of thewavefunction around the vortex center, respectively, with q labeling thewave
vector of phonons.

For every value of q r, c( ), the H1,1s read off from equation (69) can be cast into the form (16)with

m gn

m gn

m gn V

r r

r r

q r r

cos 2 ,

sin 2 ,

2 2 . 71

c c

c c

c c

1

2

3
2

a
a

m

=
=
= + + -

( ) [ ( )]
( ) [ ( )]

( ) ( ) ( )

In this case, the space-like eigenstate of H1,1s reads

1
1

2 e
, 72

r

1

1 2i c

z z
z z

ñ =
+

- a

-

- -

⎛
⎝⎜

⎞
⎠⎟∣

( )
( )( )

with H m

H m

1 4
1 3

1 3
z = -

+( ) . The eigenstate (72) features a complex angle. As a result, when rc varies in the real space,

the eigenstate 1ñ∣ will pick up a non-zero Berry phase; calculating the Berry connection

A
r

i 1 1 ,
c

1 1,1s= á
¶
¶

ñ∣ ∣

wederive the Berry phase as

Mr A rd 1 d , 73c c1 1b a= = - -∮ ∮· ( ) ( ) ( )

withM the total atomicmass contained in the quasiparticle wave packet. The Berry connection A1will then give
rise to an effective vector potential (magnetic field) acting on the spatialmotion of the vortex. In a previous study
of the system [6], the vector potential has beenworked out for a regime of the parameter space but the global
feature of the distribution of the Berry-like curvature (magnetic field) is still left unknown. In our calculation, the
distribution ofmagnetic field for the two-mode BdG equation is globally depicted infigure 3.

4.3. Spin-wave excitations in antiferromagnet
Herewe demonstrate the Lorentz spin-orbital coupling (SOC) for the spin-wave excitations in a 1D
antiferromagnet. Concretely, we consider two sublattices, labeled byA andB,which encode the positive and
negativemagneticmoments near zero temperature. The correspondingHamiltonian in the standard
Heisenberg’s description reads

H J S S S S S S

J S S S S S S

1

2

1

2
, 74

s
i

ai
z

b i
z

ai b i ai b i

j
bj
z

a j
z

bj a j bj a j

,
, , ,

,
, , ,

å

å

= + +

+ + +

d
d d d

d
d d d

+
+

+
- -

+
+

+
+

+
- -

+
+

[ ( )]

[ ( )] ( )

where 1d =  stands for the nearest neighboring sites, J 0> is the antiferromagnetic exchange integral, Szai (S
z
bj)

are the spin operator (z component) on the sublattice A (B), and S is the standard spin flip operators.Without
loss of generality, we suppose the spins in the sublattice A (B) are along the positive (negative) zdirection in the
limit of low temperatures.

Hamiltonian (74) can be recast into amore transparent formusing theHolstein–Primakoff transformation
[27]. Briefly, introducing a Si ai= -† , and b Si bi= +† , together with the Fourier transformation into themomentum
space

a N a a N ae , e , 75i
k

kR
k i

k

kR
k

i ii i
1
2

1
2å å= =- - - ( )† †

b N b b N be , e , 76j
k

kR
k j

k

kR
k

i ij j
1
2

1
2å å= =- - - ( )† †
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we rewrite equation (74) as (dropping a constant)

H ZSJ a a b b a b b a

ZSJ a b
a

b

2

2
1

1
. 77

s
k

k k k k k k k k k k

k
k k

k

k

k

k

å

å

g g

g
g

= + + +

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

˜ ( )

( )

† † † †

†
†

Here,Z=2 is the coordination number for the 1D system; ke cosk Z
k1 ig = å =d

d ( )· is the structure factor of
the 1D lattice (here the lattice constant is taken as al= 1, and themomentum ismeasured in the unit of al ).
Let the ground state ofHamiltonian (77) be denoted as 0ñ∣ (which involves a superposition of enormous number
of Fock states in the particle number representation a ak k

† , b bk k
† ).

The aboveHolstein–Primakoff transformation allows a vivid description of the spin-wave excitations of the
system (see equation (74)) in terms of ‘particles’ and ‘holes’ created in the ground state. In the simplest case, we
consider the dynamics of an arbitrary (1, 1)-spinor state given by

a
b

aa bb
1

0 , 78k k
r

º + ñ( ) ( )∣ ( )†

with ρ the normalization constant, corresponding to creations of a pair of particle and hole. The time evolution
of equation (78) can be derived as

t

a
b

a
b

i
d

d

1
1

, 79k

k
1,1 s

g
g

=
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

which features a k-dependent generator. The corresponding eigenspinors u v, T( ) and v u, T* *( ) are found to be
real and take the form

u k
k

1

2

1

sin
1 , 80= +

⎛
⎝⎜

⎞
⎠⎟( )

∣ ( )∣
( )

v k k
k

sgn cos
1

2

1

sin
1 , 81= -

⎛
⎝⎜

⎞
⎠⎟( ) ( ( ))

∣ ( )∣
( )

whichmanifestly exhibit the SOC effect, with the orbital state k coupled to a Lorentz spinor. Since the SOC effect
for the conventional unitary quantummechanics has been studied extensively in both single-body systems
[28–31], where Zitterbewegung oscillation occurs [28, 29] andBEC systems [32], where single planewave phase
and standingwave phasewere found, along this directionwemay expect and explore the ample physical
consequences of the Lorentz SOC.

5. Conclusion

To summarize, we have studied the dynamics of bosonic quasiparticles based on the BdG equation for the
1, 1( )-spinor.We show that the dynamical behavior of these bosonic quasiparticles is described by Lorentz
quantummechanics, where both time evolution of a quantum state and the representation transformation
represent Lorentz transformations in the complexMinkowski space. The basic framework of the Lorentz
quantummechanics for the Lorentz spinor is presented, including construction of basic operators that are
analogue of Paulimatrices. Based on this, we have demonstrated the Lorentz counterpart of the Berry phase,
Berry connection, and Berry curvatures, etc. Since such Lorentz spinors can be generically found in physical
systems hosting bosonic Bogoliubov quasi-particles, we expect that our study allows new insights into the
dynamical properties of quasiparticles in diverse systems. In a broader context, the present work provides a new
perspective towards the fundamental understanding of quantum evolution, as well as new scenarios for
experimentally probing the coherent effect.While our study is primarily based on bosonic Bogoliubov equation
for the 1, 1( )-spinor, we expect the essential features also appear in dynamics described by the bosonic
Bogoliubov equation ofmulti-mode, the study of which is of future interest.
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