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Abstract

We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it
Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in
complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary
transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like,
light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics,
such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors.
We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature
and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their
Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose—
Einstein condensate (or superfluid), and one-dimensional antiferromagnet.

1. Introduction

Bosonic Bogoliubov quasiparticles arise in many different physical systems [ 1, 2]. They have been studied
extensively in condensed matter physics for their static properties, such as dispersion, and in particular, their
relation to superfluidity [3—5]. Inspired partly by the work in [6], where the dynamics of Bogoliubov
quasiparticles in a superfluid with a vortex is studied, we present here a general theoretical framework for such
dynamics. As the bosonic Bogoliubov operator is non-Hermitian, we find that the dynamics is a continuous
Lorentz transformation of a state in complex Minkowski space. In contrast, the usual quantum dynamics is a
continuous unitary transformation of a state in Hilbert space. For this reason, we call the dynamics of bosonic
Bogoliubov quasiparticles Lorentz quantum mechanics.

In Lorentz quantum mechanics, we find that the interval of a state is conserved and therefore the complex
Minkowski space has three subspaces: space-like, light-like, and time-like, which are invariant during the
dynamic evolution. In this work we focus on the (1, 1)-type spinor, the simplest Lorentz spinor, and use this
example to explore in which ways the Lorentz quantum mechanics are similar to, and different from, the
conventional quantum mechanics. In particular, we construct the matrix representing the Lorentz
transformation of complex vectors, and the Lorentz counterpart of the standard Pauli matrices. The Berry phase
is also investigated in the context of Lorentz quantum mechanics and it is found to be quite different from the
Berry phase in usual quantum mechanics.

In the end, we give three specific physical systems: the spin wave excitations in a one-dimensional (1D)
antiferromagnetic system, the phonon excitations on top of a vortex in the Bose—Einstein condensate (BEC), and
a 1D fermion gas at low temperatures, where Lorentz quantum mechanics can arise. We use these systems to
further illustrate our general results. In particular, with the antiferromagnetic system we point out explicitly how
spin—orbit coupling can arise in Lorentz quantum mechanics.

We note that the non-Hermitian Hamiltonian has been extensively studied in the context of PT-symmetric
quantum mechanics, where the spectrum (eigenvalue) of non-Hermitian operator is proved to be real [7]. The
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PT-symmetric structure has found extensive applications in phonon-laser (coupled-resonator) systems, where
giant nonlinearity arises in the vicinity of phase transition between PT-symmetric phase and broken-PT phase,
resulting in enhanced mechanical sensitivity [8], optical intensity [9], controllable chaos [10] and
optomechanically-induced transparency [ 11], as well as the phonon-rachet effect [ 12]. The geometric phase of
PT-symmetric quantum mechanics [13] and the stability of driving non-Hermitian system has also been studied
[14]. The bosonic Bogoliubov operator studied here stands for a class of generalized PT-symmetric Hamiltonian
[15], or more precisely, the anti-PT Hamiltonian [16], which can be realized experimentally by making use of
refractive indices in optical settings [16, 17]. It will be interesting to examine the general theoretical framework
of these PT-symmetric quantum mechanics in the future.

2. Basic structures of Lorentz quantum mechanics

The Lorentz quantum mechanics is described by the following dynamical equation

a (1) a (1)
e B M
dr : :
Ay (1) Aman(t)
where H = H' isa Hermitian matrix while g,,, , is given by
Omn = diag{1, 1,...1, —1, —1,...—1}. )

Equations of this type are usually called Bogoliubov-de Gennes (BdG) equations and are obeyed by bosonic

quasi-particles in many different physical systems (see section 4). For simplicity, we use the case 07 ; to explore
the basic structures of the Lorentz quantum mechanics as generalization to g, ,, is straightforward.

2.1. Complex Lorentz transformation and complex Minkowski space
The BAG equation for spinor (1, 1) is
. d(a@) a(t)
— = H .
i dt(b(t)) ! (b(t)) @

Here a(f) and b(t) are the standard bosonic Bogoliubov amplitudes, H = H is a Hermitian matrix, and
01,1 = o, is the familiar Pauli matrix in the z direction, i.e.

. 1 0

o1, = diag{1, —1} = (O 71). 4)
The 01, H as the generator of the dynamics for spinor (1, 1) is an analogue of the Hamiltonian in the
Schrodinger picture. Different from the Hamiltonian, though, ¢y  H is not Hermitian; it generates complex
Lorentz transformation in complex Minkowski space as we shall see.
For an arbitrary initial state |/ (0)) = [a(0), b(0)]", the wavefunction [¢)(¢)) = [a(t), b(¢)]" attimest > 0

can be solved formally from equation (3) as

[ (1) = U, 0)](0)). 5
Here U(t, 0) is the evolution operator defined by
U(t, 0) = e ot/ f, (6)

The goal of this section is to show that the operator U(#, 0) defined in equation (6) generates a complex Lorentz—
instead of a unitary-evolution of |1 (#)). In particular, defining the interval for a Lorentz spinor

In((a, b)T) = (a*, b*)o11(a, )T = |a]> — |b?, (7)
we prove below that the interval is conserved under the evolution generated by U(t, 0),i.e.
la@®)> — [b®)* = |a(0)* — [b(0)|*. (8)

For the above purpose, we first establish the following relation
u+0'1,1u = 01,1 (9)

Expanding o7 ;U and (U") !0y, in Taylor series, and noting 07,0y ; = 1, the nth term in the expansions of both
011U and (U 'oy; are of the form
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1 i)
_(_i) tho-l,lHO'l,lH 0'1,1H. (10)
n!'\ 74
n—1(o1,1H)s
This readily gives
0'1)12/[ - (u-l-)7101,1> (11)

from which equation (9) ensues. Hence, by virtue of equation (9), we obtain

(POlorld(0) = (¥ (0) o1 (0)), (12)

and thus equation (8). Similarly, we can show that 2/ = 1and (¢ (¢)|¢(¢)) is not conserved during the
dynamical evolution.

Itis clear from the above results that the vector space spanned by states |t/ (¢)) is not a Hilbert space and the
evolution operator I/ is not a unitary transformation. Due to its mathematical similarity to the Lorentz
transformation in Minkowski space, we call the vector space spanned by states 1) (#)) complex Minkowski space
and any operator satisfying equation (9) Lorentz transformation. For the (1, 1)-spinor, the general matrix form
of the Lorentz transformation is

*
€= (C ”*), (13)
n <
where |(|*> — |n* = 1, with the corresponding inverse Lorentz matrix being
¥k
gl = (C K ) (14)
-1 ¢

To avoid any confusion, we reiterate that our Lorentz transformation is a mathematical generalization of the
Lorentz transformation of special relativity to complex numbers. Physically, they are very different; our Lorentz
transformation operates on states of bosonic Bogoliubov quasiparticles which form a complex Minkowski space;
the Lorentz transformation in special relativity operates on space-time which is a real Minkowski space.

As the interval defined in equation (8) does not change under Lorentz transformation, the complex
Minkowski space where the states of bosonic Bogoliubov quasiparticles reside in has three subspaces up to the
normalization constant, which are defined by In((a, b)) = |a|* — |b]> > 0, In((a, b)") = |al* — b} =0
and In((a, b)) = |al* — |b]* < 0.To set the convention, we call them space-like, light-like, and time-like,
respectively. Physically, if the space-like states with |a> — |b]> > 0 describe bosonic Bogoliubov quasiparticles,
then the time-like states with |a|> — |b]> < 0 describe the corresponding anti-particles [5].

We thus conclude that the dynamical evolution generated by 2/(¢, 0) conserves the interval (see
equation (8)), and therefore, is a continuous complex Lorentz transformation in complex Minkowski space.

Before we proceed to explore other properties of this Lorentz quantum dynamics, we take a sidestep to point
out that the BAG equation is a special class of PT-symmetric quantum mechanics [15, 18-21]. The general form
of two-mode PT-symmetric Hamiltonian has been written as [15, 18-21]

€+ ycosf —iusingd  (ysin® + ijpcos + v)e ¥
pT = . . ) . (15)
(ysin@ + ipcosf — v)e'? € — ycosf + iy sinf
where €, 11, v, 7, 0 and  are real parameters. In fact, both Hermitian Hamiltonian H and BdG Hamiltonian oy  H
are special cases of the PT-symmetric Hamiltonian (15). It follows from (15) that the two-mode BdG
Hamiltonian 0y H recovers from Hpy when ¢ = 0, § = 2N7 and ¢ = 2Nm; while the Hermitian Hamiltonian

Hrecoverswhen y = v = 0.

2.2. Eigen-energies and eigenstates
Although the 0, H is not Hermitian, under certain conditions, it can admit real eigenvalues—which are
relevant for physical processes. We write 07  H in terms of three basic matrices as (dropping the term involving

the identity matrix)
(0 1 0 i 10
o H = ml(_l O) + mz(i 0) + ms(o _1); (16)

where the parameters m; (i = 1, 2, 3) arereal. The eigen-energies are the roots of the following equation
mi — (mf + my) = E2 (17)

Itis clear that the eigenvalues are real provided the condition

m3 > ml + m; (18)
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Figure 1. The degeneracy regime of Lorentz spinor parameterized by m;, 1, and m; as in equation (16) forms the surface of a cone. As
will be discussed in section 3, the charge (monopole) for the Berry curvature (monopole) is at the tip of the cone rather than
distributing over the whole degeneracy cone.

e degeneracy cone
constant-energy surfaces

E

0
2, 2R
(m +m))

Figure 2. Illustration of the constant-energy surfaces of BAG equation parameterized by m1,, m, and m;. The arrows indicate the
directions of increasing (decreasing) of energy for state |1) (2)). On the cone’s surface, the two eigenstates are degenerate. Because the
surfaces assume the axial symmetry about the m; axis, the two-dimensional plot is depicted for clarity.

is satisfied. In this work, we shall restrict ourselves to this physically relevant regime of real-eigenvalues in the
parameter domain specified by (1, m,, m;3), and we denote the two real eigenvalues as E, and E,, with the
corresponding eigenstates labeled as | 1) and |2), respectively.

Two facts are clear from equation (17): (i) in the parameter space (m;, m,, m;3), the two eigenstates |1) and |2)
exhibit degeneracies on a circular cone (see figure 1), which resembles the light-cone in special relativity. This is
in marked contrast to a unitary spinor, where the degeneracy occurs only at an isolated point; (ii) unlike a unitary
spinor where the constant-energy surfaces are elliptic surfaces, both eigenstates of o7  H display hyperbolic
constant-energy surfaces (see figure 2).

We now describe the basic properties of the eigenstates associated with the operator 0y ; H. They are
solutions to the following eigen-equations

o1,1H|1) = Ej|1), 19)
o1,1H|2) = E,|2). (20)

Keeping in mind that only real eigenvalues are considered, for F; = E; = E,, we have
(2ay,l1) = 0. (21

It can be checked that the two eigenstates of 0y ; H can always be specifically expressed as

) = (ﬁ) 2) = (ZI) (22)

This means thatif |1) is space-like then |2) is time-like or vice versa.
In the energy representation defined in terms of | 1) and |2), a time-evolved state |1 (t)) = [a(t), b(t)]" (see
equation (3)) can be written as
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[Y(t)) = all)e B + g|2)e Bt (23)

In transforming |4 (¢)) from the Bogoliubov representation to the energy representation, the interval of the
Lorentz spinor is preserved, i.e. it is a complex Lorentz transformation. To see this, using equation (21), we find

In(|yp (1)) = (Y () o1l (1))
= lal(1loil1) + lal*(2]01,12). (24)

By further assuming a gauge for Lorentz-like normalization, i.e.

In(|1>) = <1|01,1|1> =1,
In(|2)) = (2]o112) = —1, (25)

we obtain from (24) that
In([y (1)) = lal* = [b]* = |a* — laf, (26)

meaning the interval is conserved for the above representation transformation.

The normalization condition |u]> — |v[> = 1is different from the eigenstates of a conventional unitary spinor.
In fact, if one naively enforce the unitary gauge on equation (22), say, |u|*> + |v|* = 1, unphysical consequences
would ensue; the time-evolved wavefunction in the original Bogoliubov representation [|)) = (a, b)"] could not
maintain its ordinary amplitude, such that |a (¢)|> + |b(t)|> = 1fort > 0, and, in particular, the amplitude in
different representation would take different value, e.g. |a|* + |qf* = |a(t)]* + |b(t)|*, which can be easily
inferred from equation (23).

In general, when oy 1 H takes the form (16) with m5; = 0, it exhibits two light-like eigenvectors; whereas,
when m3 = 0, there are one space-like and one time-like eigenvectors. Thus, in the physically relevant regime
mi > m{ + mj as considered here, we find | 1) is space-like and |2) time-like. As a result, a light-like vector can
be formed from a superposition of two eigenvectors with equal weight, i.e. |a|* — |o? = |al* — |b]* = 0.

2.3.Representation transformation and physical meaning of the wavefunction
In quantum mechanics, the change from one representation to another (or from one basis to another) is given by
a unitary matrix. In Lorentz quantum mechanics, the representation transformation

) — 1¥') = LlY) (27)
is facilitated by Lorentz matrix £ in equation (13). Correspondingly, an operator K transforms as
K— K' = gKg (28)

Note that, since £ is not a unitary matrix, we have £7! = £,
As an example, we consider the transformation from the Bogoliubov representation to the energy
representation as described earlier. In this case, the eigenstates |1) and |2) transform as

1) = (3) = gll) = ((1)) (29)
2) = (Z:) —gl2) = (?) (30)

where the matrix £5 is shown in equation (13), with { = u*and n = —v, i.e.
(= )
£ (_V ; ) (31)
Obviously, as we have proven, the interval must be conserved, i.e., [u]> — |[v}> = ? — 02 = 1,
[v¥? — |u*]? = 02 — 1? = —1.Inaddition, the bosonic Bogoliubov operator transforms as,
E, 0
0'1,1H — £BO'1,1H£§1 = ! . (32)
0 E

This special Lorentz transformation from the original representation to the energy representation is just the
well-known Bogoliubov transformation for bosons [5, 22, 23].

In light of the conservation of interval—rather than norm—of the state vector under transformations, a
question immediately arises as to whether, or to what extent, the wavefunction in the context of Lorentz
quantum mechanics still affords the physical interpretation as the probability wave? Indeed, in the energy
representation, see equation (23), it is clear that |q 3 |, with |q* + |a> = 1, canbeinterpreted as the
probability of finding the spinor in the eigenstate | 1(2)), i.e., a wavefunction g|1) + ©|2) still describes a
probability wave. However, in the Bogoliubov representation, the interpretation of a wavefunction as the
probability wave is no longer physically meaningful. For example, consider the eigenstate |1) = (u, v)T, which is
usually generated from creating a pair of Bogoliubov quasiparticles in the ground state of the system. Yet, |u|?
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and |v|* cannot represent the probabilities in the Bogoliubov basis; the Bogoliubov basis is not a set of
orthonormal basis (see section 4 for concrete examples), and therefore, instead of |u> + |v]> = 1,the
convention |u> — |v]* = 1 mustbe taken.

2.4. Completeness of eigenvectors
Based on equation (22) (see also equations (21) and (25)), the completeness of eigenvectors in the energy
representation now takes a different form compared to the unitary case, reading

L||j><j|01,1 =1, (33)

i
or, equivalently,

01,1|__||j><j| =1 (34)
j

Here, the notation | | [for (1 4+ 1)-mode] is defined by
L) (il = 11) (1 = 12) (21 (35)
j

It can easily be found that, ensured by the property of Lorentz matrix £/0; 1 £ = 0 1, the completeness
expression (33) (or (34)) remains in any other representation.

2.5. Analogue of Pauli matrices

In analogy with the conventional spinor that is acted by the basic operators known as Pauli matrices, it is natural
to ask, for the Lorentz spinor, if similar matrices can be constructed. Such analogue of the Pauli matrices,
denotedby 7; (i = 1, 2, 3), isrequired to fulfill the following conditions: (i) any operator oy, H, when written in
terms of 7; (dropping the term involving identity matrix), i.e.

o H=mn+ mn+ n3m, (36)

must have real-number components #;; (ii) the matrices 7; (| = 1, 2, 3) should have the same real eigenvalues,
say, =1, and can transform into each other via Lorentz transformation (see equation (28)).

Based on (i) and (ii), we see that the matrices as appeared in equation (16) do not represent the analogue of
the Pauli matrix for the Lorentz spinor: while they satisfy the requirement (i), the condition (ii) is violated.
Instead, we consider the following constructions:

(V21 (V2 (10
7'1—(_1 —ﬁ)’ Tz—(i —\/E)’ 3—(0 71)- (37)

Itis easy to check that 7; in equation (37) satisfy both requirements (i) and (ii). In particular, the transformation
between 7 and 73 is explicitly found to be

n=LgnL, (38)

7ﬁ;1iandn = fﬁ;l

where £ is of the form (13) with { = i, and that between 7, and 7 is given by

T = 2’7’3271, 39
for £Lwith { = @eag andn = —%ei%,

2.6. Heisenberg picture

The current Lorentz evolution is in fact defined in the analogue of Schrodinger picture (denoted by subscript s),
i.e. any physical operator keeps constant while the wavefunction undergoes Lorentz evolution. In analogy with
the conventional spinor, the Lorentz quantum mechanics can also be expressed in the analogue of Heisenberg
picture (denoted by subscript k). The relations of an operator O and the state |¢)) between the two pictures are

O(t)h — eilfl,lHtose*iUl,lHt) (40)
[ = et (1), (41)
where |1));, keeps constant but O(t), satisfies the analogue of Heisenberg equation,
., 00(t
555 — o, H, O, (12)

with [a1,1H, O(t);,] being the commutator between 0y 1 H and O(t)y,.

6
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2.7. Generalization to multi-mode
In this section, we extend the above formulations for the ¢; ; Lorentz spinor to the case of multi-mode spinor
with o, ,. The operator o, ,H has m + nenergy eigenstates, denoted by [1), |2), ..., |m + n). Defining the

interval ofa (m + n)-mode wavefunction |v)) = (ay, ay, ..., @) as
m m—+n
In(|4) = (Plomal) = Y lajl> = > laj® (43)
j=1 j=m+1

Itis easy to see that the intervals of the eigenstates are
In(lj)H)=1 for j=1,2,...m,
In(lj)=—-1 for j=m+1,m+2,..m+ n. (44)
In addition, the orthogonal condition for two non-degenerate eigenstates is derived as
(jlomalk) =0, for j=k, (45)

generalizing equation (21) for the (1, 1)-mode. Using equations (44) and (45), the completeness of eigenvectors
can be expressed as

|_||]> <j|0m,n =1 (46)
j
or, equivalently
omall1) (il = 1, (47)
j
with the symbol | _|; for (1, n)-mode defined as
m m+n
LA Gl = 2210 G = X2 1) (il (48)
j j=1 j=m+1

3. Adiabaticity and geometric phase

3.1. Adiabatic theorem

Consider a (1, 1)-spinor described by the operator a; ; H (R), which depends on a set of system’s parameter R.
Suppose the spinor is initially in an eigenstate, say | 1), before the parameter R undergoes a sufficiently slow
variation, thus driving an adiabatic evolution for the Lorentz spinor. The relevant matrix element capturing the
slowly varying time-dependent perturbation can be evaluated as, by acting the gradient operator V = 9 onthe

R
equation (19) and using equation (20),

QIVHN)  (2IVH|1)
2 VI1) = = . 49
(2lo1,1 V1) E—_E I (49)

Here, the last equality is ensured by the real eigenvalues in the considered parameter regimes, together with the
condition E; = E,.

We see that the relation (49), except for an additional oy 1, is identical with that in unitary quantum
mechanics [24]. This allows us to generalize the familiar adiabatic theorem to the context of Lorentz quantum
mechanics; starting from an initial eigenstate | 1(R)) (2(R))), the system will always be constrained in this
instantaneous eigenstate so long as R is swept slowly enough in the parameter space. (A rigorous proof would be
similar to that in the conventional quantum mechanics [24, 25], and therefore, here we shall leave out the
detailed procedure.)

3.2. Analogue of Berry phase
In conventional quantum mechanics, it is well-known that an eigen-energy state undergoing an adiabatic
evolution will pick up a Berry phase [26], when a slowly varying system parameter R realizes aloop in the
parameter space. Here we show that in the context of Lorentz quantum mechanics, a Lorentz counterpart of the
Berry phase will similarly arise.

The time evolution of an instantaneous eigenstate, which is parametrically dependent on R, can be
written as
[y = |m) e‘ifhmﬁﬂeiﬂ, (50)
with m =1, 2. Here, — f E,,(R)dt / 7z denotes the dynamical phase and 3 the geometric phase. Substituting
equation (50) into equation (3), we find
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% = i<1|01’1giR|1>; (51)
and
% - _i<z|al,la%|z>. (52)
From equations (51) and (52), we can readily read off the Berry connections as
A =i(1]e1,1 V|1), (53)
A, = —i(2|01,1V|2). (54)

Equations (53) and (54) show that the Berry connection in the Lorentz quantum mechanics is modified from
the conventional one, where the Berry connection is given by i<m|a%|m>. Will such modifications give rise to a
different monopole structure for the Berry curvature? Or, will the monopole in the Lorentz mechanics still occur
at the degeneracy point (where E; = E,)? To address these questions, we now calculate the Berry curvature
B = V x A.Withoutloss of generality, we take the eigenvector |1) for concrete calculations.

Our starting point is the identity (1]|0,)|1) = 1.Byacting V on both sides, we obtain

(11,1 VI1) + (1]o1,  VI1)* = 0. (55)
This indicates that (1|07 ; V1) is purely imaginary (A, is real). Hence, B, can be evaluated as
B =V xA = —ImL|<V1| ol 1) (jl o1 x V| 1), (56)
i
where [,,, represents the imaginary part. In deriving equation (56), we have used the completeness relation (33)
and the following relation
V X (ub) =Vu xb+ uV xb, (57)

valid for arbitrary scalar ;s and vector b.

According to equation (49), B in equation (56) is well defined provided E, = E,, such that the monopole is
expected to be absent in this case. To rigorously establish this, let us calculate the divergence of the Berry
curvature,i.e. V - B. Introducing an auxiliary operator

F = —ioy1 LIV)) (jloi,i (58)
j
which is Hermitian, F = F7, as ensured by the completeness relation (33), we have
01,11 Vj) = iF| j)
V x F= —i0'1)1|_||Vj> X <Vj|0'1)1

J
= —i|F|j) x (jIF
i
= —iF X Ul,lF- (59)

In deriving the above, we have used equation (57). Further noting that
i(jIFlk) = (il Vi) (f'lovalk) = (jlovaVIk), (60)

o

j
the Berry curvature can be expressed in terms of F as
B, = —T,[I(1[Flj) x (jIF|1)
j
= *Im<1|F X 0'1’1F|1>. (61)
Finally, by virtue of V x Fin equation (59), we find
V . B] = —Im[<V1|(F X 0'1)1F)| 1> + <1|(F X O'])lF) . V| 1>
+ (U V- (Fx o,H) 1)]
= —Im[—l<1| FUl,l . (F X UI,IF)| 1) + l<1|(F X UI,IF) . Jl,lFl 1>
+ <1|(V X F) . GI,IFI 1> — <1|FO’1’1'(V X F)l 1>]
= 0. (62)
Therefore, as expected, the monopole in the Lorentz quantum mechanics can only appear in the degenerate
regime where B, diverges, similar as the conventional unitary quantum mechanics.
Next, searching for the monopole, we focus on the degeneracy regime in the parameter space defined by

(my, m,, ms), which, as shown in figure 1, forms a circular cone. There, imagine the path of R = (my, m,, mj3)
realizes aloop in the vicinity of the cone’s surface. In this case, the instantaneous eigenstate, say, |1(R)), is

8
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Figure 3. [llustration of the analytic result given by equation (63) for the distribution of strength of Berry curvature (magnetic field) for
instantaneous eigenstate |2). For the state |1), everything is the same except that the direction of Berry curvature is reversed, which we
drop for clarity. The magnetic fluxes are always straight lines which emanate from the origin O (the tip of the cone) in (1, my, m3)
space as parameterized in equation (16). § introduced in equation (63) is the angle spanned by 115 axis and direction of Berry curvature
under study. There is no magnetic flux outside of the cone, in the cone the magnetic field becomes stronger as approaching the cone’s
surface and tends to infinity on the surface. Because the flux density assumes the axial symmetry about the 15 axis, the two
dimensional plot is depicted for clarity.

expected to vary in a back-and-forth manner (dropping the overall phases including both the dynamical and
Berry phase). This is because the instantaneous eigenstate, apart from an overall phase, is always the same along
any straight line emanating from the origin. As a result, the integration of A; along this loop vanishes, meaning
there is no charge of the Berry curvature on the cone’s surface, even though it is in the degeneracy regime.

We thus conclude that—just as in the case of unitary spinor—the charge, if exists, can only be distributed on
the isolated points, i.e., the original monopole O, in R = (m;, m,, ms) space. However, different from unitary
spinor, the magnetic flux does not uniformly emanate from the monopole O to the parameter space, instead, it
emanates only to the region in the cone (more closer to the 15 axis). In addition, even in this region, the
magnetic flux is not uniformly distributed. Specifically, by evaluating the geometric phase along aloop
perpendicular to the m; axis, we can find the distribution of the magnetic flux density per solid angle as a function
of the angle 6 from m; axis, i.e.,

(1 + tanzﬁ)g
p=F——

- (63)
2(1 — tan?0)2
with — /+ associated with the state [1) (|2)). Note that the flux density is proportional to the Berry curvature,
which acts as a magnetic field, whose magnitude according to equation (63) increases when approaching the
cone. Right on the surface of the cone, where § — =, the magnetic field diverges. Outside the cone, on the other
hand, the eigenvalue becomes complex such that the notion of adiabatic evolution and geometric phase become
meaningless, i.e. there is no magnetic field emanating outside the cone from the monopole O. Again, due to the
aforementioned fact that the instantaneous eigenstate (apart from an overall phase) remains the same along any
straight line emanating from the origin, we expect all the magnetic field fluxes to be described by straight lines
(see figure 3).

Alternatively, we can write 0y ; H in terms of the analogues of Pauli’s matrices 7; (see equation (36)), which is
then mapped onto a vector (n;, np, #3) in the parameter space. However, this equivalent kind of decomposition
will not contribute anything but modify the slope of Berry curvature § — 6’ (tan(¢) = 1/C, while
tan(¢’) = 1/(C — +/2), with Cbeing any constant).

3.3. Chern number
The Chern number—which reflects the total magnetic charge contained by the monopole on O—can be
calculated from equation (63) as,

C, = Foo, (64)
with —/+ for the state |1) (2)). Hence, the Lorentz spinor not only has distinct distribution of the magnetic flux

compared to the unitary spinor, both also possesses unexpectedly the qualitatively different Chern number
which is divergent.
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4. Physical examples

In previous sections, we have developed and studied the Lorentz quantum mechanics for the simplest Lorentz
spinor. Such a Lorentz spinor can arise in physical systems containing bosonic Bogoliubov quasiparticles, for
example, in BECs [5]. Specifically, we illustrate our study of Lorentz quantum mechanics by investigatinga 1D
fermion gas at low temperatures, phonon excitations on top of a vortex in the BEC, and spin wave excitations in
a 1D antiferromagnetic system.

4.1. One-dimensional Fermi gas

As the firstillustrative example, we investigate the fermion excitations in a 1D fermion gas at low temperatures.
Since excitations dominantly occur for fermions near the Fermi surface (note at 1D, the Fermi surface shrinks to
the left (L) and right (R) Fermi points), the corresponding Hamiltonian can then be written as [2]

1
Z Z(asqVan ks + 27 84PsqPs—q + g2psqp§fq)' (65)
s=R,L ¢q 2N

Here, the operator a, q (asq) creates (annihilates) an excited fermion near the Fermi point (s = R, L) with
momentum g (measured with respect to the ground state value). In addition, x; = 1, —1fors = R/L,
§ = L/R, vrlabels the Fermi velocity, and p,, = > al, +¢sk is the density operator in the momentum space
representation. In writing down equation (65), we have taken into account the interactions between two
fermions. Specifically, g, denotes the strength of interaction between two fermions near opposite Fermi points
(i.e. g ~ 2kg), while g, for those close to the same Fermi point (i.e. ¢ ~ 0).

Let |0) denote the state of perfect Fermi sphere (a Fermi line in 1D case). A generic state describing density
fluctuations near the Fermi points can then be written in terms of a pseduo-spinor as

_[ \F — \F qu]m (66)

where [is the size of the system. As discussed in [2], the density operators p,, can be effectively treated as bosonic
operators within the approximation

[psq’ ps’q’] = <0[psq’ ps’q’] |0>‘ (67)

By assuming equation (67), it is found that equation (66) represents a Lorentz spinor whose dynamics is
governed by the BdG equation below

&y )
.. d (a VPt oo o a
15_( ):%q w ( ) (68)
dr \b £y BN

The generator oy 1 H of the dynamics in equation (68), when written in form of equation (16), corresponds
tom = g,q/(@2m), my = 0and m3 = vpq + g,/(2m)q. Thus, when vy + f—; > 2% (see equation (18)), the
01,1 H exhibits real eigenvalues, and has space-like and a time-like eigenvectors. Due to m, = 0, as illustrated in
figure 3, there is no magnetic flux penetrating a loop in the plane defined by (111, m3). As aresult, the Berry phase
picked up by the eigenstate, say |1(R)), is always zero when R varies along a loop in the parameter space of
(my, m3). According to our theory, it is impossible to implement a geometric force (vector potential or artificial
magnetic field) to any fermions in the 1D Fermi gas. We must search for other intriguing systems to implement
an artificial magnetic field. Below is an example.

4.2. Phonon excitations on top of a Bose—Einstein condensate vortex
The above example shows that the existence of a non-zero Berry phase requires oy ; H—when written in form of
(16)—to contain a complex part, i.e. m, = 0. Below, we demonstrate that this can be realized in the dynamics of
phonons excited on top of a vortex in a BEC.

Following [6], we assume the phonon wave packet has a narrow width smaller than all the relevant length
scales associated with slowly varying potentials (e.g. trapping potential). The corresponding effective BAG

equation can be derived as
d fa) H, Hye2a®) rg
lﬁa(b) N Ul’l(Hzezmm H (b) (69

10



10P Publishing

NewJ. Phys. 20 (2018) 013024 QZhangand BWu

where H, = gn(r,) and

2
H, = q? +2gn(r) + V() — p F Q- (1 X q). (70)

Here, r. labels the coordinate of the vortex center, gis the interatomic coupling constant, V (r,) is the trapping
potential of BEC, and €2 is the rotating frequency of the whole system. Furthermore, n(r,) and «(r;) denote the
particle density and phase of the wavefunction around the vortex center, respectively, with q labeling the wave
vector of phonons.

For every value of (q, r.), the 0y 1 H read off from equation (69) can be cast into the form (16) with

my = gn(x.)cos[2a(r,)],
my = gn(r,)sin[2a(r)],
ms=q*/2 + 2gn() + V() — p (71)

In this case, the space-like eigenstate of oy ; H reads

_1f
|1> - 2((< o <1)621a(r5)]’ (72)

. _ 1/4 . .
with ¢ = Hom )T The eigenstate (72) features a complex angle. As a result, when r, varies in the real space,
H, + ms

the eigenstate | 1) will pick up a non-zero Berry phase; calculating the Berry connection

. 0
A= 1<1|01,1a—|1>,

c

we derive the Berry phase as

Bi=dr = § (M- Ddaw), (73)

with M the total atomic mass contained in the quasiparticle wave packet. The Berry connection A; will then give
rise to an effective vector potential (magnetic field) acting on the spatial motion of the vortex. In a previous study
of the system [6], the vector potential has been worked out for a regime of the parameter space but the global
feature of the distribution of the Berry-like curvature (magnetic field) is still left unknown. In our calculation, the
distribution of magnetic field for the two-mode BdG equation is globally depicted in figure 3.

4.3. Spin-wave excitations in antiferromagnet

Here we demonstrate the Lorentz spin-orbital coupling (SOC) for the spin-wave excitationsina 1D
antiferromagnet. Concretely, we consider two sublattices, labeled by A and B, which encode the positive and
negative magnetic moments near zero temperature. The corresponding Hamiltonian in the standard
Heisenberg’s description reads

z Qz 1 — -
Hy=]Y [S:S{ivs + E(S;Sb,i+6 + SuiSpivs)]
i

z z 1 —_ —
+ I 85Sa s + E(Szgsa,jw + SySais)ls (74)
70

where ¢ = £1stands for the nearest neighboring sites, J > 0 is the antiferromagnetic exchange integral, S7; (S3)
are the spin operator (z component) on the sublattice A (B), and S* is the standard spin flip operators. Without
loss of generality, we suppose the spins in the sublattice A (B) are along the positive (negative) z direction in the
limit of low temperatures.

Hamiltonian (74) can be recast into a more transparent form using the Holstein—Primakoff transformation
[27]. Briefly, introducing a;' = S;,and b] = S}, together with the Fourier transformation into the momentum

ar’

space
a;=N2> efRig,  af = N33 e Rig]) (75)
k k
bj=N7:) e by, bl = N2 b, (76)
k k
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we rewrite equation (74) as (dropping a constant)

H,=2ZS> (a] ax + b bx + walb] + vebeay)
k
Loy ) %

_ zZS]Zk:(aQ bk)(% 1)(%). 77)
Here, Z = 2is the coordination number for the 1D system; v, = %2[5 eld — cos(k) is the structure factor of
the 1D lattice (here the lattice constant is taken as ;= 1, and the momentum is measured in the unit of /2 /a;).
Let the ground state of Hamiltonian (77) be denoted as |0) (which involves a superposition of enormous number
of Fock states in the particle number representation a,j ag, b by).

The above Holstein—Primakoff transformation allows a vivid description of the spin-wave excitations of the

system (see equation (74)) in terms of ‘particles’ and ‘holes’ created in the ground state. In the simplest case, we
consider the dynamics of an arbitrary (1, 1)-spinor state given by

(Z) = %(aa,j + bby)[0), (78)

with p the normalization constant, corresponding to creations of a pair of particle and hole. The time evolution

of equation (78) can be derived as
o d fa\ 1 Y\/a
lﬁa(b) - 0-1)1(7]( 1 )(b): (79)

which features a k-dependent generator. The corresponding eigenspinors (4, v)" and (v¥, u*)! are found to be
real and take the form

1 1
© = ol 1) o

v (k) = sgn(cos(k)) %(m — 1], (81)

which manifestly exhibit the SOC effect, with the orbital state k coupled to a Lorentz spinor. Since the SOC effect
for the conventional unitary quantum mechanics has been studied extensively in both single-body systems
[28-31], where Zitterbewegung oscillation occurs [28, 29] and BEC systems [32], where single plane wave phase
and standing wave phase were found, along this direction we may expect and explore the ample physical
consequences of the Lorentz SOC.

5. Conclusion

To summarize, we have studied the dynamics of bosonic quasiparticles based on the BdG equation for the

(1, 1)-spinor. We show that the dynamical behavior of these bosonic quasiparticles is described by Lorentz
quantum mechanics, where both time evolution of a quantum state and the representation transformation
represent Lorentz transformations in the complex Minkowski space. The basic framework of the Lorentz
quantum mechanics for the Lorentz spinor is presented, including construction of basic operators that are
analogue of Pauli matrices. Based on this, we have demonstrated the Lorentz counterpart of the Berry phase,
Berry connection, and Berry curvatures, etc. Since such Lorentz spinors can be generically found in physical
systems hosting bosonic Bogoliubov quasi-particles, we expect that our study allows new insights into the
dynamical properties of quasiparticles in diverse systems. In a broader context, the present work provides a new
perspective towards the fundamental understanding of quantum evolution, as well as new scenarios for
experimentally probing the coherent effect. While our study is primarily based on bosonic Bogoliubov equation
for the (1, 1)-spinor, we expect the essential features also appear in dynamics described by the bosonic
Bogoliubov equation of multi-mode, the study of which is of future interest.

References

[1] Bogoliubov N N 1947 J. Phys. USSR. 11 23

[2] Giamarchi T 2004 Quantum Physics in One Dimension (Oxford: Oxford University Press)

[3] Pethick CJand Smith H 2002 Bose—Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[4] Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Clarendon Press)

[5] WuBandNiuQ 2003 New J. of Phys. 5 104

[6] Zhang C, Dudarev A M and Niu Q 2006 Phys. Rev. Lett. 97 040401

12


https://doi.org/10.1088/1367-2630/5/1/104
https://doi.org/10.1103/PhysRevLett.97.040401

10P Publishing

NewJ. Phys. 20 (2018) 013024

[7] Bender CM and Boettcher S 1998 Phys. Rev. Lett. 80 5243
Bender C M, Boettcher S and Meisinger PN 1999 J. Math. Phys. 40 2201
[8] Zhong-Peng L etal 2016 Phys. Rev. Lett. 117 110802
[9] JingH et al 2014 Phys. Rev. Lett. 113 053604
[10] LiX-Y,JingH, MaJ-Y and Wu'Y 2015 Phys. Rev. Lett. 114253601
[11] JingH et al 2015 Sci. Rep. 5 9663
[12] Zhang] etal2015 Phys. Rev. B92 115407
[13] Jiangbin G and Qing-hai W 2010 Phys. Rev. A82 012103
Jiangbin G and Qing-hai W 2013 J. Phys. A: Math. Theor. 46 485302
[14] Jiangbin G and Qing-hai W 2015 Phys. Rev. A91 042135
[15] Qing-hai W, Song-zhi C and Jie-hong Z 2010 J. Phys. A: Math. Theor. 43 295301
[16] PengP etal2016 Nat. Phys. 121139
[17] EL-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[18] Bender CM, Brody D Cand Jones H F 2002 Phys. Rev. Lett. 89 270401
Bender CM, Brody D Cand H F 2004 Phys. Rev. Lett. 92 119902 (erratum)
[19] Bender CM, Meisinger P N and Wang Q 2003 J. Phys. A: Math. Gen. 36 6791
[20] Mostafazadeh A 2003 J. Phys. A: Math. Gen. 36 7081-92
[21] Mostafazadeh A A and Ozcelik S 2006 Turk. J. Phys. 30 437-43
[22] Swanson M S2004 J. Math. Phys. 45 585
[23] Fring A and Moussa M HY 2016 Phys. Rev. A 94 042128
[24] BornM and Fock V A 1928 Z. Phys. A51 165
[25] Zhang Q, Gong]Jand Wu B 2014 New J. of Phys. 16 123024
[26] Berry MV 1984 Proc. R. Soc. A392 45
[27] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[28] Schrodinger E 1930 Sitzber. preuss. Akad. Wiss., Physikmath. KI. 24 418
[29] Vaishnav]Y and Clark C W 2008 Phys. Rev. Lett. 100 153002
[30] Ruseckas J, Juzeliunas G, Ohberg P and Fleischhauer M 2005 Phys. Rev. Lett. 95 010404
[31] Juzeliunas G, Ruseckas J, Jacob A, Santos L and Ohberg P 2008 Phys. Rev. Lett. 100 200405

QZhangand BWu

[32] WangC, Gao C, Jian C-M and Zhai H 2010 Spin-orbit coupled spinor Bose—Einstein condensates Phys. Rev. Lett. 105 160403

13


https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1063/1.532860
https://doi.org/10.1103/PhysRevLett.117.110802
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.114.253601
https://doi.org/10.1038/srep09663
https://doi.org/10.1103/PhysRevB.92.115407
https://doi.org/10.1103/PhysRevA.82.012103
https://doi.org/10.1088/1751-8113/46/48/485302
https://doi.org/10.1103/PhysRevA.91.042135
https://doi.org/10.1088/1751-8113/43/29/295301
https://doi.org/10.1038/nphys3842
https://doi.org/10.1364/OL.32.002632
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.92.119902
https://doi.org/10.1088/0305-4470/36/24/314
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1088/0305-4470/36/25/312
https://doi.org/10.1063/1.1640796
https://doi.org/10.1103/PhysRevA.94.042128
https://doi.org/10.1007/BF01343193
https://doi.org/10.1088/1367-2630/16/12/123024
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevLett.100.153002
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1103/PhysRevLett.100.200405
https://doi.org/10.1103/PhysRevLett.105.160403

	1. Introduction
	2. Basic structures of Lorentz quantum mechanics
	2.1. Complex Lorentz transformation and complex Minkowski space
	2.2. Eigen-energies and eigenstates
	2.3. Representation transformation and physical meaning of the wavefunction
	2.4. Completeness of eigenvectors
	2.5. Analogue of Pauli matrices
	2.6. Heisenberg picture
	2.7. Generalization to multi-mode

	3. Adiabaticity and geometric phase
	3.1. Adiabatic theorem
	3.2. Analogue of Berry phase
	3.3. Chern number

	4. Physical examples
	4.1. One-dimensional Fermi gas
	4.2. Phonon excitations on top of a Bose–Einstein condensate vortex
	4.3. Spin-wave excitations in antiferromagnet

	5. Conclusion
	References



