
0.1 Pulse propagation from a more general standpoint:

Parabolic equation

We know that the wave eqn. describes the propagation of the field in a dielectric

medium

(
∂2

∂z2
− µ0ε0

∂2

∂t2
)ε̃(z, t) = µ0

∂2p̃

∂t2

where p̃(z, ω) = ε0χ̃(ω)ε̃(z, ω) is the linear polarization in the medium. We know,

however, that we can find solutions that look like

ε̃(z, t) = Re{Ẽ(z, t)ei[ω0t−β(ω0)z]}

Ẽ(z, t) : complex envelope; ei[ω0t−β(ω0)z] : carrier wave.

Thus it should be very useful to obtain a wave equation which describes the prop-

agation of the (complex) envelope. We should be able to do this since we know the

function β(ω) (remember that this comes from the expression for χ̃(ω)].

The approach taken by Siegman in section 7.2 is to expand χ̃(ω) in the vacinity

of ω0, and make extensive substitution back into the wave eqn. We will take a more

heevrishe?? approach (due to Haus), but will arrive at the same result.

We know that one frequency component of the field propagate as

ε̃(z, ω) = ε̃(0, ω)e−iβ(ω)z

so the field obeys the differential equation

∂ε̃

∂z
= −iβε̃

We will assume the pulse to have a sufficiently narrow spectrum that a Taylor

expansion of β(ω) can be performed:
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∂ε̃

∂z
= −i{β(ω0) +

dβ

dω
|ω0(ω − ω0) +

1

2

d2β

dω2
|ω0(ω − ω0)2}ε̃ (1)

Now, if the spectrum of ε̃ is narrow and centered at ω0, it is convenient to express

it as a function of (ω − ω0)

ε̃(z, ω) = Ẽ(z, ω − ω0)e−iβ(ω0)z (2)

where Ẽ is the complex envelope (complex since there may be phase shifts relative

to the carrier β(ω0)). Note that Ẽ is assumed to vary slowly w.r.t. z.

Time domain:

ε̃(z, t) =
1

2π

+∞∫
−∞

ε̃(z, ω)eiωtdω

=
1

2π

+∞∫
−∞

Ẽ(z, ω − ω0)e−iβ(ω0)zeiωtdω

=
1

2π
ei[ω0t−β(ω0)z]

+∞∫
−∞

Ẽ(z, ω − ω0)ei(ω−ω0)tdω

= ei[ω0t−β(ω0)z]Ẽ(z, t) (3)

i.e. Ẽ(z, t) = slowly varying complex envelope ?? in time domain= Fourier trans-

form of Ẽ(z, ω − ω0).

Next step: convert the differential eqn. for ε̃(z, ω) into one for Ẽ(z, ω).

Substituting Eqn. (2) into Eqn. (1),

∂

∂z
[Ẽ(z, ω−ω0)e−iβ(ω0)z] = −i{β(ω0)+

dβ

dω
|ω0(ω−ω0)+

1

2

d2β

dω2
|ω0(ω−ω0)2}Ẽ(z, ω−ω0)e−iβ(ω0)z
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[
∂

∂z
Ẽ − iβ(ω0)Ẽ]e−iβ(ω0)z = −i{β(ω0) +

dβ

dω
|ω0(ω − ω0) +

1

2

d2β

dω2
|ω0(ω − ω0)2}Ẽe−iβ(ω0)z

divide by e−iβ(ω0)z and cancel the − iβ(ω0)Ẽ(z, ω − ω0) terms

∂

∂z
Ẽ(z, ω − ω0) = −idβ

dω
|ω0(ω − ω0)Ẽ(z, ω − ω0)− i

2

d2β

dω2
|ω0(ω − ω0)2Ẽ(z, ω − ω0)

In order to convert this into an equation governing the pulse envelope in the time

domain, we do Fourier transform:

First , the left-hand side becomes

1

2π

+∞∫
−∞

∂

∂z
Ẽ(z, ω − ω0)eiωtdω =

1

2π

∂

∂z

+∞∫
−∞

Ẽ(z, ω − ω0)eiωtdω

= eiω0t · 1

2π

∂

∂z

+∞∫
−∞

Ẽ(z, ω − ω0)ei(ω−ω0)td(ω − ω0)

= eiω0t
∂

∂z
Ẽ(z, t)

where we have used Eqn. (3).

Right-hand side:

1

2π

+∞∫
−∞

dβ

dω
|ω0(ω − ω0)Ẽ(z, ω − ω0)eiωtdω

=
dβ

dω
|ω0e

iω0t
1

2π

+∞∫
−∞

(ω − ω0)Ẽ(z, ω − ω0)ei(ω−ω0)td(ω − ω0)

= −idβ
dω
|ω0e

iω0t
1

2π

+∞∫
−∞

Ẽ(z, ω − ω0)
∂

∂t
ei(ω−ω0)td(ω − ω0)
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= −idβ
dω
|ω0e

iω0t
∂

∂t
{ 1

2π

+∞∫
−∞

Ẽ(z, ω − ω0)ei(ω−ω0)td(ω − ω0)}

= −idβ
dω
|ω0e

iω0t
∂

∂t
Ẽ(z, t)

In fact, it can generally be shown that

[i(ω − ω0)]nẼ(z, ω − ω0) = F{ ∂
n

∂tn
Ẽ(z, t)}

thus

1

2π

+∞∫
−∞

d2β

dω2
|ω0(ω − ω0)2Ẽ(z, ω − ω0)eiωtdω

= −eiω0t
d2β

dω2
|ω0

∂2

∂t2
Ẽ(z, t)

Substituting back into the wave eqn. and dividing out the eiω0t term, we find

∂

∂z
Ẽ(z, t) = −dβ

dω
|ω0

∂

∂t
Ẽ(z, t) +

i

2

d2β

dω2
|ω0

∂2

∂t2
Ẽ(z, t)

Recall we defined the group velocity as

1

vg
=
∂β

∂ω
|ω0 = β′

which yields the ’parabolic equation’

∂

∂z
Ẽ(z, t) +

1

vg

∂

∂t
Ẽ(z, t) =

i

2

d2β

dω2
|ω0

∂2

∂t2
Ẽ(z, t)

(1) Note that if the group velocity dispersion is zero ( β′′ = 0 ⇒ β′ = 1
vg

=

constant), then
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∂

∂z
Ẽ(z, t) +

1

vg

∂

∂t
Ẽ(z, t) = 0

This equation is satisfied for any function

Ẽ(z, t) = Ẽ(z − vgt)

Thus any reasonable pulse (i.e. obeying the SVEA, and not so broadband that

the approximation for β breaks down), not just the Gaussian pulse we treated earlier,

will propagate with an unchanged envelope function when β′′ = 0. Consequently, vg

= group velocity concept is valid for any ’reasonable’ pulse, not just a Gaussian. To

repeat, the envelope moves with the group velocity, which may be different from the

phase velocity of the carrier wave.

(2) Note that the right-hand side of the parabolic eqn. is imaginary, so that it

contributes to the phase of the pulse as it propagates. Thus if β′′ 6= 0, the pulse enve-

lope will be distorted with propagation. Later, when we discuss space-time analogies,

we will see how you can think of this term as a kind of ’complex diffusion’ responsible

for pulse spreading, etc.

(3) A preview of things to come: terms can be added to the parabolic equation to

describe additional modifications to the pulse as it propagates. For example, addition

of a Kerr nonlinearity gives rise to the ’nonlinear Schrodinger eqn.’, and addition of

gain and absorptioin terms gives rise to a ’master eqn.’ which describes the evolution

of a pule in a passively mode-locked laser.

Before we go on to discuss dispersive pulse broadening and comopression, it will

be useful to obtain some practical relations for the various dispersion parameters. The

propagation constant β(ω) is usually obtained from the index of refraction, expressed
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most often by the Sellmeier eqn. i.e. given n(λ), we need β, β′, β′′, · · ·

dβ

dω
=

d

dω
[
n(ω)ω

c
] =

ω

c

dn

dω
+
n

c

d2β

dω2
=
ω

c

d2n

dω2
+

2

c

dn

dω

From Sellmeier’s eqn., we can get dn
dλ

,d
2n
dλ2

, etc. We need to relate d
dλ

to d
dω

: d
dω

= dλ
dω

d
dλ

(Chain’s rule)

λ =
2πc

ω

dλ

dω
= −2πc

ω2
= − 2πc

4π2c2

λ2

= − λ2

2πc

(1) d
dω

= − λ2

2πc
d
dλ

similarly, one can derive

(2) d2

dω2 = λ2

(2πc)2
[λ2 d2

dλ2
+ 2λ d

dλ
]

(3) d3

dω3 = − λ3

(2πc)3
[λ3 d3

dλ3
+ 6λ2 d2

dλ2
+ 6λ d

dλ
]

Plugging these in the expressions for β, β′, β′′, · · · one finds

(4) dβ
dω

= ω
c
dn
dω

+ n
c

= 1
c
(n− λdn

dλ
)

(5) d
2β
dω2 = ω

c
d2n
dω2 + 2

c
dn
dω

= λ
(2πc)

λ2

c
d2n
dλ2

(6) d
3β
dω3 = 3

c
d2n
dω2 + ω

c
d3n
dω3 = − λ2

(2πc)2
1
c
(3λ2 d2n

dλ2
+ λ3 d3n

dλ3
)

The point to remember: it is the curvature d2n
dλ2

that determines the GVD.

Also note that our dispersion parameter D (ps/m · nm)

D = −1

l

∆τp
∆λ

= −d
2β

dω2

ω

λ
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= − λ

(2πc)

λ2

c

d2n

dλ2
− 2πc

λ2

D = −λ
c

d2n

dλ2

example:

SF-10 flint glass, λ0 = 620 nm.

Expansion of Sellmerer’s eqn. yields

d2n

dλ2
' 0.392µm−2

D = 8.1× 10−4 S

m2

CPM ?? laser output: typically τp ' 60 fs, ∆λ ' 8nm

In 1 mm flint, the pulse broadens by

∆τp = DL∆λ = 6 fs (10% broadening)

0.2 sign of GVD

We have seen that the dispersive pulse broadening is determined by

β′′ =
d

dω
(

1

vg(ω)
) = − 1

v2
g(ω)

dvg(ω)

dω

=
λ

2πc

λ2

c

d2n

dλ2

For propagation in transparent dielectrics in the optical region of the spec-
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trum, we found from the Lorentz model ( Sellmeier eqn.)

You can confirm algebraically what is apparent graphically: the index of refraction

decreases with wavelength (i.e. increases with frequency), so that red travels faster

than blue. In fact

d2n

dλ2
> 0

i.e. n(λ) is concave upward, which is called normal, or more precisely, ‘positive

dispersion’. ⇔ β′′ > 0

In the regions where there is strong absorption (i.e. on resonance), the sign of the

dispersion is opposite:

on resonance ↔ ‘anomalous dispersion’ = ‘negative dispersion’

The terminology of normal and anomalous dispersion is a historical artifact, and

conveys no physical sense of what is going on, so we will try to avoid it. The important

thing to remember is

Table 1: normal and anomalous dispersion

positive negative
β′′ > 0 β′′ < 0
dvg
dω

< 0 dvg
dω

> 0
red faster blue faster

positive chirp negative chirp

Clearly, if an optical pulse is always propagating through dielectric media, it will

continually acquire more positive chirp, and hence it will just get longer and longer with

propagation. We need to find some optical systems with negative GVD (without

dispersion!), so we can compensate the positive chirp and maintain short pulses.
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0.3 Notation

Before we go on to consider some systems with negative dispersion, we are going to

shift our notation slightly from that of Siegman, both for convenience and to use the

standard notation in the correct ultrafast optics literature. We have shown that the

phase part of the transfer function is

e−iΦ(ω) = e−iβ(ω)z

for propagation in the z direction. We have looked at pulse propagation by ex-

panding β(ω). However, all that really matters in the end is the total phase a pulse

acquires on propagation

Φ(ω) = β(ω)z

where z is the physical path length. Thus instead of considering β, many authors

consider the phase

Φ(ω) = Φ(ω0) + Φ′(ω0)(ω − ω0) +
1

2
Φ′′(ω0)(ω − ω0)2

+
1

6
Φ′′′(ω0)(ω − ω0)3 +

1

24
Φ(4)(ω0)(ω − ω0)4 + · · ·

where Φ′′(ω0) = 2nd-order dispersion = β′′z, Φ′′′(ω0) = 3rd-order dispersion = β′′′z,

etc.

Note that the expansion terms are just z times the expressions for the derivations

of β.

e.g.

Φ′ =
dβ

dω
z =

z

c
(n− λdn

dλ
)

Φ′′ =
d2β

dω2
z =

λz

(2πc)

λ2

c

d2n

dλ2

Recall that we showed explicitly for a Gaussian pulse that the envelope was delayed
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in time by

tg =
z

vg(ω0)
= β′z

Thus we have a nice physical interpretation of the expansion coefficients in the

expansion of Φ(ω):

Φ′(ω0) = dΦ
dω
|ω0 = ‘ group delay’ (in fs)

Φ′′(ω0) = dΦ
dω
|ω0 = ‘ group delay dispersion’ (GDD, in fs2)

Of course, the interpretation of Φ′ as the group delay is not specific to Gaussian

pulses:

(1) the parabolic equation showes that vg = z
Φ′ describes the envelope motion for

any reasonable envelope funciton.

(2) on homework, you will show directly by Fourier transforming

E(ω − ω0)eiΦ
′(ω0)(ω−ω0)

that the effect of Φ′ is just to shift the time origin.

Now that we konw that Φ′(ω0) is the group delay d, the pulse envelope after prop-

agating a distance z, we can see what the physical effect of higher order phase terms

is.

Φ(ω) = Φ(ω0) + Φ′(ω0)(ω − ω0) +
1

2
Φ′′(ω0)(ω − ω0)2 +

1

6
Φ′′′(ω0)(ω − ω0)3

Φ′(ω0)(ω − ω0) : group delay; 1
2
Φ′′(ω0)(ω − ω0)2 : GDD

Since the group delay of the peak of the pulse is given by Φ′(ω0) , we can ask, what

is the group delay at an arbitrary frequency ω?

tg(ω) = Φ′(ω) = Φ′(ω0) + Φ′′(ω0)(ω − ω0) +
1

3
Φ′′′(ω0)(ω − ω0)2

Φ′(ω0) : group delay at carrier; Φ′′(ω0)(ω − ω0) : group delay depends linearly on

(ω − ω0) (Figure 1); 1
3
Φ′′′(ω0)(ω − ω0)2 : group delay ∝ (ω − ω0)2 (Figure 1).
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Figure 1: Linear chirp. Of course, it corresponds to a quadratic phase in frequency
domain. Note: symmetric pulse stretching.

Figure 2: Quadratic chirp⇐⇒Cubic phase delay⇐⇒asymmetric pulse stretching.
(both red and blue delayed)

Figure 3: Gaussian pulse after acquiring Φ′′′(ω0) = 200 fs3. The original pulse had
∆t = 5 fs, ω0 = 2π(0.375 fs−1), and E0 = 1. The envelope function is included for
clarity.
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