
The second generalization of the notation is that if we are considering propagation

in 2 or 3 dimension, we have to remember that β(ω) is a vector ( the wavevector).

Thus the phase part of the transfer function is really

e−iβz → e−i
~β·~r

0.1 Grating dispersion[1, 2]

We can get the basic idea by considering the propagation of a beam between a parallel

pair of transmission gratings(Figure 1)

Figure 1: a beam between a parallel pair of transmission gratings

Note that the blue (short wavelength) components have a shorter optical path than

the red components, so one might expect the GVD< 0.

In the illustration, we have chosen the angle of incidence γ = 0, so the grating eqn.

is

sin γ − sin θ = m
λ

d

or

− sin θ = mλN

where N = 1
d

= groove density.

1. Parallel grating ⇒the output is parallel to the input for any λ.
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2. diffraction angle larger for red than blue components⇒ optical path length longer

for red.

3. the output has a ‘spatial chirp’ (red+blue components are separated spatially)

• is useful for some applications (we will see shortly)

• detrimental for others ⇒ solution: put a mirror (or root prism to change beam

height) at the output to retroreflect the beam. After a double pass, there will

be no spatial chirp, and the temporal dispersion will be doubled (i.e. pick

up twice the optical path difference)

• note spatial chirp is noticeable for small diameters.

The basic problem is to find the path length vs. ω. Geometry for reflection grat-

ings(Figure 2): We are after the distance PABC. ( P and C are chosen arbitrarily,

but after all we are only offer changes in the distance with ω, so we are free to choose

for convenience.)

Figure 2: Geometry for reflection gratings.

From the figure
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PABC = b+ b cos(γ + θ)

b =
G

cos θ

PABC =
G

cos θ
[1 + cos(γ + θ)] ≡ P

Grating eqn. for 1st order:

sin γ − sin θ = λN

Total phase shift on PABC is

ϕ =
ω

c
× PABC + phase shift on gratings

=
ω

c
p+ C(ω)

We are interested in relative phases, so we can count from the most convenient

point N , where the normal intersects with the grating.

Recall there is a relative phase shift of 2π at each groove of a grating ⇒

C(ω) = 2π×Number of grooves between B and N

= 2πN ×BN

From figure, BN= G tan θ

C(ω) = 2πNG tan θ(ω)

(+ phase shifts on reflection at surfaces, assuming independence on frequency⇒negligible)
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Group delay:

dϕ

dω
=

d

dω
[
ω

c
p+ C(ω)] =

p

c
+ [

ω

c

dp

dω
+
dC(ω)

dω
]

consider first the term in brackets

dC(ω)

dω
= 2πNG

d(tan θ)

dθ

dθ

dω

d(tan θ)

dω
=

1

cos2 θ

dθ

dω

dp

dω
=
dp

dθ

dθ

dω

dp

dθ
=

d

dθ
{ G

cos θ
[1 + cos(γ + θ)]}

= G
d

dθ
{ 1

cos θ
[1 + cos γ cos θ − sin γ sin θ]}

= G
d

dθ
{ 1

cos θ
+ cos γ − sin γ tan θ}

= G{ sin θ

cos2 θ
− sin γ

cos2 θ
}

= −G λN
cos2 θ

(from the grating equation)

ω

c

dp

dω
+
dC(ω)

dω
= [

2π

λ
(−G λN

cos2 θ
) +

2πGN

cos2 θ
]
dθ

dω
= 0

⇒
dϕ

dω
=
p

c
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p is total pathlength.

The question naturally arises: is this cancellation just fortuitous, or is it generally

true, so that dϕ
dω
≡ p

c
?

This question has been dealt with by Brorson and Haus.[2] They show that this

result naturally follows as a direct consequence of Fermat’s Principle.

Recall (e.g. from Born +Wolf sec. 3.3) that light travels along ‘external paths’ (i.e.

a path such that the path length is stationary against small changes) with a velocity

c.

Figure 3: Actual light path (solid).

Thus if the path length is p(ω), the group delay must be

τ(ω) =
p(ω)

c

(assuming the medium is nondispersive, as it usually is since the gratings are in air

or even vacuum.)

Why is the correction C(ω) needed? The argument was given by Treacy ( who

called it R(ω) - a better notation).

Consider the diffraction of a plane wave from a grating.(Figure 4)
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Figure 4: diffraction of a plane wave from a grating.

• clearly, AB < A′B′

• of course, the difference in optical paths is an integral multiple of wavelength.

The way to define a unique phase for the wavefront BB′ is to note that the reason that

the OPD is interger×λ is that each groove along the grating contributes a −2π phase

shift (can be thought of as phase matching).

This phase shift along the grating surface is important for calculating the variation

in phase with frequency, dφ
dω

.(Figure 5)
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Figure 5: variation in phase with frequency.

Note that for a grating pair (Figure 6), PC = P ′C ′ ⇒ CC ′ is automatically a

wavefront.

However, in measuring the phase from point P to the phase defined by C, R(ω)

must be included in order to get a consistent result for dφ
dω

.

We are after the group delay dispersion (GDD)

ϕ′′ =
d2ϕ

dω2
=

1

c

dp

dω
=

1

c

dp

dθ

dθ

dω

We now need dθ
dω

:

sin γ − sin θ = λN =
2πcN

ω

d

dω
(sin γ − sin θ) = − cos θ

dθ

dω
= −2πcN

ω2
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dθ

dω
=

2πcN

ω2 cos θ

ϕ′′ =
1

c
(
−GλN
cos2 θ

)(
2πcN

ω2 cos θ
)

= −2πGλN2

ω2 cos3 θ
= − Gλ3N2

2πc2 cos3 θ

For the double-pass geometry, this is multiplied by 2:

ϕ′′ = − Gλ3N2

πc2 cos3 θ

This equation was first derived by Treacy[1], where it was expressed in terms of the

incidence angle and d = 1
N

:

ϕ′′ = −Gλ
πc2

(λ
d
)2

[1− (sin γ − λ
d
)2]

3
2

The important thing about this equation is that the group delay dispersion is

always negative for the parallel grating pair (θ is always between ±π
2
). Thus the

grating pair can be used to compensate for th positie dispersion that stretches pulses

as they propagate through normally dispersive media.

0.2 Higher order dispersion

Clearly higher order terms in the phase expansion can be derived simply from successive

diffrentiation of ϕ′′. The algebra is tedious and un-illuminating, so we will just give

some results:

ϕ′′′ = − 3λ

2πc
ϕ′′(ω0){1 + λN [

λN − sin γ

1− (λN − sin γ)2
]}

note that a real angle of diffraction implies

(λN − sin γ)2 < 1
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or

−1 < λN − sin γ < 1

1 + λN · λN − sin γ

1− (λN − sin γ)2
=

1− (λN − sin γ)2 +Nλ(λN − sin γ)

1− (λN − sin γ)2

1. numrator= 1− (λN)2 + 2λN sin γ − sin2 γ + (λN)2 − λN sin γ

= 1 +λN sin γ− sin2 γ = 1 + sin γ(λN − sin γ) > 0 (| sin γ| < 1, |(λN − sin γ)| < 1)

2. denominator always > 0 (obvious)

3. ϕ′′ < 0 derived above

⇒ ϕ′′′ > 0 Third order dispersion of grating pair is positive.

This is an important fact. You can use the negative ϕ′′ of normal dielectrics, but

the sign of ϕ′′′ is positive for both gratings and normal dielectrics, so the pulse will

have cubic error (i.e. not transform-limited!)

For reference, the fourth order dispersion (FOD) of the grating pair is

ϕ(4)(ω0) =
(2ϕ′′′)2

3ϕ′′
+ { λ2N

2πc[1− (λN − sin γ)2]
}2ϕ′′

When must higher order dispersion be taken into account? Physically, the answer

must be that larger will be more likely to have substantial phase errors. We can make

this a little more quantitative by looking at the ratio of TOD to SOD (GDD) for a

pulse of bandwidth ∆ω

R = |
1
6
ϕ′′′∆ω3

1
2
ϕ′′∆ω2

| = |ϕ
′′′∆ω

3ϕ′′
|

=
∆ω

ω
{1 + λN [

λN − sin γ

1− (λN − sin γ)2
]} using λ

2πc
=

1

ω

0.3 Practical implementation

Either reflection or transmission gratings may be used. Most gratings are fabricated

to give maximum diffraction efficiency in the Littrow configuration (where the beam
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diffracts back on itself so θ = −γ) (Figure 6)

Figure 6: Littrow configuration.

Thus the grating compressor usually operates in the -1 order in the scheme of Figure

5. (Figure 7)

\

Figure 7: The grating compressor usually operates in the -1 order.

Note:

1. if all the beams are confined to the plane, it is not possible to operate exactly

at Littrow, frequently resulting in reduced efficiency.

2. you could tilt the gratings up or down, but that comes at the cost of other phase

errors on the beam.

3. transmission gratings can be used exactly at Littrow.

4. note the difficulty of running near Littrow with nonzero beam diameters (fixed

beam dia. ⇒if you want low dispersion, you have to reduce the grating separation

10



⇒reduced efficiency. Going to too low a groove spacing N results in low efficiency

since there are many diffracted orders)

5. why not always use transmission gratings?

• availability

• bandwidth is generally lower ( i.e. over what frequency range ∆ω is the diffrac-

tion efficiency high?)

• in high power systems: damage

For reasons of efficiency, you generally want higher-N gratings (lower-N gratings usually

are not quite as efficient, especially if grating orders other than -1 are allowed.)

Why not arbitrarily high?

1. N needs to be low enough that the gratings can be far enough apart so the beams

will not be chopped.

2. sensitivity to higher order phase errors.

Van ruald in his thesis has plotted ϕ′′′

ϕ′′ and ϕ(4)

ϕ′′ as a fraction of angle of incidence.(Figure

8) Note that

1. lower N ⇒ lower high order phase errors.

2. lower N⇒ lower sensitivity to misalighment, i.e. variations in angle of incidencee

3. it is a log scale!
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Figure 8: (a)−ϕ′′′(ω0)ω
ϕ′′(ω0)

, (b) ϕ(4)(ω0)ω2

ϕ′′(ω0)
, vs. incident angle, γ, for a standard

grating compressor made with various values of λN . Littrow incidence angle
for each grating is noted by an arrow.
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