
 

Lecture 9 

Step-Index Optical Fibers (Lipson 10.3)   

Of course, technologically the most important and familiar optical waveguide which confines light 

in both x and y is the optical fiber. A common form of the fiber is a simple conceptual extension of 

our slab guide: 
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n n , of course 

As usual, the propagation equation we have to solve (see p.A7) is the Helmholtz eqn. 
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Now, given the symmetry of the problem, we need to work in cylindrical coordinates 
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One subtle point (see Pollock Chapter 5.2) is that the rE and E components cannot be decoupled. 

This can be illustrated schematically by the following example, where an initially purely radial 

field becomes a mostly azimuthal field in propagation: 

    

 

On the other hand, a purely ẑ component of the field remain so  

   



 

 

Thus it is possible to write a scalar wave equation for zE ; once zE  is known, Maxwell’s eqn. can 

be used to give rE and E . Most texts (including Lipson) simply start by writing down the wave 

eqn. for a scalar field E in cylindrical coordinates: 
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As usual, we assume the z-dependence is simply
i ze 

, so ( , , ) ( , ) i zE r z E r e     

2

2 2

2 2 21 1
( ) ( ) 0i o

E E
r n k E

r r r r




  
   

  
 

This equation may be solved via separation of variables: 
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Multiply through by

2r

R
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Note that each term depends either on r or on , but not on both. Thus we can write  
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(both sides are independent, so they must equal a constant ). 

By convention, the constant is called
2l . 

(1) Azimuthal eqn. 
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   =>  ( ) cos sinA l B l      

(some texts write it as 
il ilAe Be  ) 

Thus we find azimuthal modes, where the field is modulated angularly (i.e. in the intensity, 

observe an even # of lobes) 

 

(2) Radial Eqn: 
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   Just as with the slab waveguide, in order to have bound solutions, we must have  
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=> we have radial eqn., for the core and cladding 

           

(i) core : 
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(ii) cladding: 
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     The solutions to these equations are the family of Bessel functions. They share some 

common features with the sine, cosine, and experimental solutions we found appropriate for 

the slab waveguide problem. 

(1) As usual, we ignore mathematical solutions which diverge   as 0r   or 

as r  , since these are unphysical! 

(2) In Eqn.(i), when 
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   , the solution is the Bessel function of the first kind of 

order l, usually written ( )lJ r  

Two things to remember: 

(a) The lJ  functions are oscillatory functions of r, just like sines and cosines. (see plot 

Figure 5.4) 

In fact, when 1r (large r), they are simply damped cosines: 
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(b) The Bessel functions are orthogonal, just as the sine and cosine modes of the slab 

problem. 

(3) In eqn. (ii), when
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order l, usually written ( )l r . 

The l  are damped solutions. In fact, when 1 r , 
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Note that higher-order modes (l>0) will both radial and angular modulation. 

  

As with the slab waveguide, the allowed values of   (i.e. the eigenvalues) of the 



 

guided modes are obtained by matching the fields at the core of cladding boundary 

(tangential E and H continuous). 

 

Qualitatively, one can see that the situation is similar to before, e.g. 

 
Similarly to the slab waveguide case, the  and   values are coupled  
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And a normalized frequency (V-number) is defined: 
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This is an important parameter (usually quoted by manufactures of optical fibers), since it 

basically determines the number of modes which can propagate. 

 

The mode structure of multi-mode fibers is quite complex, and not germane to our goals here, so 

we will simply quote some results in two important limits (see Polloch chap.5 for a discussion) 

(1) V large. In this case the number of modes which can propagate can be approximated 

by  

          # of modes= 
2
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V
 

    (This includes polarization degeneracies) 

Of course, multimode fibers have a large core, and are thus good for carrying high power (e.g. for 

illumination), but they are poor for optical communication because of the modal dispersion 

problem. 

(2) V small.(i.e. small core ,long wavelength) 

If V< 2.405, then only a “single mode” can propagate down the fiber. Clearly this is 

the fiber of choice for optical communications, as there can be no model dispersion. 

 

There is no cutoff for the lowest-order mode; every step-index fiber will support at 

least one guided mode. If the fiber parameters are fixed, then the cutoff condition 

for higher-order modes is  
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Now, it should be noted that the term “single-mode fiber” is a little bit of a misnomer. The fiber is 

cylindrically symmetric, so it cannot distinguish input polarizations. In other words, we could 

inject   wave polarized either along x̂ or along ŷ , and they both would have the same mode 

profile and the same  . (These two modes are “degenerate”) 

 

The functional form of the field profile of the fundamental mode in the core is the 0J  Bessel 

function. 

 

Convention: Since Bessel functions are not as easy to work with mathematically as Gaussians, the 

fundamental mode of the step-index fiber, it is conventional to approximate the fundamental mode 

by  
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The beam “radius” w is chosen so that the Gaussian provides a good approximation to the 

mode profile: 

        
3/2 6

1.619 2.87
0.65  

w

a V V
 

 This provides a better than 96% overlap with the Bessel solution over 0.8 c  to 2 c . 

 

Modes of the E.M.Field 

What is a “mode”? We have been using the term quite a lot and will continue to do so, so we 

should sharpen up the concept a bit. Let’s start with the wave equation for the electric of magnet 

field: 
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The simplest case is uniform space, so and  are constants independent of position. 

Then
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We look for solutions that oscillate harmonically, i.e. at a single frequency   
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We usually define the wavevector 
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 , so we have the Helmholtz equations  
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2 : operator;   

2k : constant = eigenvalue 

These are eigenvalue equations. 

That is, when a functional operator (
2  in this case) acts on an eigenfunction (a “mode”), it 

yields the same spatial function (the mode) multiplied by a constant (the eigenvalue). 

 

Free space: a useful set of solutions are plane waves  

eigenfunctions = plane waves  (modes )   0
ˆ ik r

k k
E r e    

eigenvalues =wavevector (squared) 

Note the crucial physical feature: the spatial function oscillates everywhere in space with the same 

frequency and phase. 

 

 

 

Why is this useful? Well, plane waves are easy to manipulate and solve problems with 

mathematically, but they do not actually exist in real life! Real physics waves are at best 

approximations to plane wave. 

So, what do we do if we have a real wave oscillating at frequency   but with a complicated 

spatial dependence
( )E r

 ? 

Let’s consider our plane waves as modes of a rectangular box of volume V, with periodic 

boundary conditions 

 

Any wave inside the box must be a sum over the discrete modes  
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Where to satisfy periodic boundary conditions  
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Now if we have let the box become infinitely large, a continuum of plane waves is allowed, 

and the sum over modes becomes an integral over a continuum of plane waves. 

         
3ˆ( ) ( ) ik rE r d ka k e       

         
3 ( ) ik rd ka k e 

  : (inverse) Fourier transform! 

We can find the amplitude of any plane wave k   that makes up the arbitrary field 

distribution 
( )E r

 by multiplying both sides by 
ik re


 and integrating: 
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 (aside: the usual plane wave normalization Factor  1/ V  has not been included here） 

Using ˆ ˆ 1   , we find   
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 : Fourier transform of the real-space field distribution. 

In words, the modes of free space are plane waves, and an arbitrary spatial field distribution may 

be obtained by summing over those modes, which is mathematically equivalent to an inverse 

Fourier transform. 

   The full 3-D Fourier transform mode expansion is actually rarely used in options. It’s nice for 

rectangular cavity problems, but those are also of little real relevance to optics. When considering 

the propagation of light, we are much more concerned with the following type of problem: 



 

 

We may know the         We may want to  We choose the 

field in some     find the field in  propagation to be 

Reference plane A ( ẑ ) some other    primarily along Z. 

reference plane B 

 

Notice that we may know the field only in plane A; this means that the 1-D Fourier transform 

mode representation of the field is of no use, since the 3-D transform requires that we know the 

field everywhere! (The integral is over all space) 

Since the field is propagating primarily along the z-direction, let’s represent the field as 
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     (Scalar field) 

In a manner similar to the Fourier transform, we can write the spatially dependent field as an 

integral over plane wave modes, but integrating only over xk  and yk  : 
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This is called the angular spectrum representation of the field; we’ll see why in a moment. It 

looks a lot like a Fourier representation, but it’s not quite the same. There are 3 spatial variables on 

the left, but the integral runs only over kx and ky . 

Note that since 
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 must satisfy the Helmholtz eqn.,   
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We are assuming space is uniform between planes A and B, so we can assume a uniform 

index of refraction, so  
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Fixes the magnitude of the total wavevector, 

Thus, although the integral runs over all ,k kx y    , the value of 
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Corresponds to a wave propagating in the +z 
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Corresponds to an evanescent wave. 

We will return to the meaning of this when we treat the problem of diffraction. For now, we 

want to take home two results: 

（1）The angular spectrum representation is a mode representation of the field propagating 

in uniform space between planes A and B. Decomposing the field into its plane wave components 

requires knowledge only of the field in A. 

Plane wave components with 
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Where , ,x y zS S S  are the direction cosines of the vector k  
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, i = x , y , z  

Ŝ = unit vector in direction of propagation:  
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   And 
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Thus the decomposition of a field into its angular spectrum corresponds to decomposing it into 

plane wave modes propagating at different angles with respect to the z axis. 

 

 

Supplementary 

Generalized mode problem 

So far we have treated the problem of finding the modes of free space, or of specific geometrics 

such as the slab waveguide or cylindrical fiber. It is interesting to consider the properties of modes 

in general, where the dielectric constant may be a function of position. 

E.g. Multilayer mirror    

E.g. Photonic crystal      

We follow the treatment of Joannopoulos, Mender, and Winn, Photonic Crystals, chap .2. 

As usual, we begin with the source-free Maxwell eqns. 
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With constitutive relation 
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We are looking for modes, which oscillate at an angle frequency  : 
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It turns out to be advantageous in the most general case to find the wave equation for H  instead 

of E . 
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Once this is solved to yield
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 , the electric field may be found from 
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Let’s write 0 r( )= ( )r r    , so the H - field eqn. becomes  
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This is in the form of an eigenvalue problem, i.e. 
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          Q̂  : operator 
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: eigenvalue  

 

This equation yields the modes of the field: i.e. For each frequency   we will know the spatial 

variation of the field that oscillates harmonically at that frequency. 

 

1,Q̂  is a linear operator 
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       => if 1H  and 2H  are solutions ,so is 1 2aH bH  

2. Def. Inner product of vector fields 
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  Two vector fields are orthogonal if 
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  Normalization : a vector field H  is normalized if 
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(proof trivial). 

3. Q̂  is a Hermitian operator , i.e. 1 2 1, 2ˆ ˆ) ( )H QH QH H，（  

   Pf.  
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(details: homework #2 ) 

4. Q̂ is Hermitian => eigenvalue 
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  is always real and positive (the latter requires the 

assumption 0r   everywhere ). Proof is left as an exercise to the readers, 

5 . Q̂  is Hermitian => two modes with different frequencies 1 , 2  are orthogonal ( this is the 

most important result of this section ). 
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     Subtract : 
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          => if 2 1   , then 
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What if 2 1  ? (In this case, the modes are said to be “degenerate”) 

An example would be two plane waves with the same frequency but propagating in different 

directions: 
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Fact (quoted without proof here): since Q̂  is linear , one can always construct linear 

combinations of modes which are mutually orthogonal , so one can always construct orthonormal 

sets of eigenmodes sets of eigenmodes for degenerate as well as nondegenerate modes . 

 (Technique: Schmidt orthogonalization ) 

 

6.The modes found by solving the eigenvalue problem form a complete set .Thus any possible 

electromagnetic field can be written as a sum over eigenmodes : 
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