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We investigate systematically the local field distribution functions of up-spins for systems of dipolar interaction,
with particular emphasis on Ising-type lattice systems. It is found that as the fraction increases, the shape of
the distribution function changes from Lorentzian to Gaussian. In addition, sub-peaks can be induced in the
distribution function by non-cubic lattice structures. This is in stark contrast with a dilute gas system, where
the distribution has only one Lorentzian peak for any up-spin fraction.
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The dipolar field interaction is an important
issue.[1−12] In this Letter, we provide a thorough study
of the local field distribution function in Ising-type
systems with particular emphasis on the lattice sys-
tem.

For Ising-type spins, e.g., molecular magnets Fe8
and Mn12,[1−3] the dipolar interaction between them
is

𝑑(𝑟) =
𝐸𝐷(1 − 3 cos2 𝜃)Ω0

𝑟3
, (1)

where 𝑟 is the displacement between spins, 𝜃 the angle
between 𝑟 and the easy axis, and 𝐸𝐷 the strength of
the interaction. For a lattice, Ω0 is the volume of the
unit-cell; for a gas, Ω0 is the volume of a particle.

When there is randomness in either spin configu-
ration or spatial configuration or both, each spin feels
a different field strength. In this kind of situation,
rather than to know exactly the field strength felt by
each individual spin, it is usually more important to
find the distribution function of the local fields felt by
the spins. The distribution function can be computed
with the Margenau method,[13−15] where one chooses
a test spin and computes how the local field felt by
the test spin changes with different spin, spatial, or
both configurations. If there is no correlation between
space and spin degrees of freedom, the distribution
function can be written as

𝑃 (𝜉) =
∑︁
{𝑟𝑗}

𝒫({𝑟𝑗})
∑︁
{𝑠𝑗}

𝒬({𝑠𝑗})𝛿
(︁
𝜉−

𝑁∑︁
𝑗=1

𝑠𝑗𝑑𝑗

)︁
, (2)

where 𝒫({𝑟𝑗}) and 𝒬({𝑠𝑗}) are the probabilities of a
given spatial configuration and spin configuration, re-
spectively; the summations are over all possible con-
figurations; 𝑑𝑗 = 𝑑(𝑟𝑗) is the dipole field generated by
a spin at 𝑟𝑗 ; 𝑠𝑗 = ±1 indicates the spin up or down;
and 𝑁 is the number of particles in the system.

In a dilute gas system, the spatial distribution con-
figuration function is uniform. In a lattice system,

however, because the spins are fixed in space, the dis-
tribution function of the system does not depend on
𝒫({𝑟𝑗}) anymore. In both dilute gas systems and spin
lattice systems, the probabilities related to the spin
degree of freedom can be characterized by the frac-
tion of up-spin states and we use 𝐹 to indicate this
fraction. Due to the symmetry of the system, we shall
focus only on the case of 𝐹 < 1/2 and treat the down-
spins as the background.

We compute the distribution functions of local field
for a dilute gas system firstly. This serves for two
purposes. On the one hand, the results for a di-
lute gas may find applications in ultra-cold molecule
systems;[5] on the other hand, these results can be
compared to the previous known results for dipolar
gases and our results for lattice systems to be pre-
sented later.

We define a concentration parameter as

𝜂 =
𝑁Ω0

𝑉
, (3)

where 𝑉 is the system volume. For a dilute gas, we
have 𝜂 ≪ 1. In this dilute limit, the correlation be-
tween the particle positions can be safely ignored and
the particles can be regarded as randomly scattered
in the space. Therefore, for a dilute dipolar gas, when
the fraction of up-spin is 𝐹 , Eq. (2) takes the following
form,

𝑃 (𝜉, 𝐹 ) =
1

𝑉 𝑁

∫︁ 𝑁∏︁
𝑗=1

𝑑3𝑟𝑗

𝑁∑︁
𝑛=0

𝐹𝑛(1 − 𝐹 )𝑁−𝑛

×
∑︁
{𝑠𝑗}𝑛

𝛿(𝜉 −
𝑁∑︁
𝑗=1

𝑠𝑗𝑑𝑗), (4)

where the summation is over all possible spin configu-
rations when each spin is fixed in space. To compute
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the distribution function, it is convenient to compute
first its Fourier transform,

𝑃 (𝑘, 𝐹 ) =

∫︁
𝑃 (𝜉, 𝐹 ) exp(−𝑖𝑘𝜉)𝑑𝜉

=
[︀ 1

𝑉

∫︁
[𝐹 exp(−𝑖𝑘𝑑𝑗)

+ (1 − 𝐹 ) exp(𝑖𝑘𝑑𝑗)]𝑑
3𝑟𝑗

]︀𝑁
. (5)

In the limit of 𝑉 → ∞, for a fixed gas concentration
𝑁/𝑉 = 𝜂, using Fresnel sine and cosine integral,[16]

we obtain

𝑃 (𝑘, 𝐹 ) = lim
𝑉→∞

[︁
1 − 1

𝑉
(𝒜1|𝑘|Ω0 − 𝑖𝒜2𝑘Ω0)

]︁𝑉 𝜂
Ω0

= exp
(︁
−𝒜1|𝑘|𝜂 + 𝑖𝒜2𝑘𝜂

)︁
, (6)

with

𝒜1 =
8𝜋2𝐸𝐷

35/2
, (7)

𝒜2 =
(1 − 2𝐹 )2𝜋𝐸𝐷

3

(︁4

3
− 4

9

√
3 ln

(︀
2 +

√
3
)︀)︁

.
(8)

After a simple reverse Fourier transform, we find that
the distribution function 𝑃 (𝜉, 𝐹 ) is Lorentzian

𝑃 (𝜉, 𝐹 ) =
𝒜1𝜂/𝜋

𝒜2
1𝜂

2 + (𝜉 + 𝒜2𝜂)2
. (9)

This recovers the result by Berkov and Meshkov.[11,12]

However, we want to emphasize that our result
here is in a sense more general than Berkov and
Meshkov’s although we consider only Ising-type spin.
In Refs. [11,12], the orientation of magnetic moment of
the particle is random, equivalent to 𝐹 = 1/2 in our
system. Consequently, it is unclear how the distribu-
tion function would change if the magnetic moment
(or spin) has a favored direction. In contrast, it is
clear from our result in Eq. (9) that the distribution
does not change its height and width as 𝐹 changes,
only the peak position shifts with 𝐹 .

In deriving Eq. (9), we have implicitly assumed
that the shape of the system is spherical. For other
shapes, the peak position is shifted and the distribu-
tion function becomes

𝑃 (𝜉, 𝐹 ) =
𝒜1𝜂/𝜋

𝒜2
1𝜂

2 + (𝜉 + 𝒜2𝜂 + 2𝐶𝐸𝐷𝜂(2𝐹 − 1))2
,

(10)
where the parameter 𝐶 is the shape coefficient of the
sample (Generally, 𝐶 = 2𝜋( 1

3 −𝑁𝑔) in which 𝑁𝑔 is the
demagnetization parameter of the sample. For ellip-
soid sample with three axes 𝑎 𝑏 and 𝑐 located in the
𝑥, 𝑦 and 𝑧 axes respectively, the demagnetization pa-
rameter 𝑁𝑔 = 1

2𝑎𝑏𝑐
∫︀∞
0

𝑑𝑥

(𝑥+𝑐2)
√

(𝑥+𝑎2)(𝑥+𝑏2)(𝑥+𝑐2)
for

the magnetic field along the 𝑧 axis).

We have also investigated the distribution function
with Monte Carlo simulation and they match almost
perfectly with our analytical results in Eq. (9).

For the general case, the shape of the system only
shifts the position of the peak and we find perfect
agreement between our theoretical results[17] and the
Monte Carlo simulation.
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Fig. 1. The local dipolar field distribution of a dilute gas
with 𝐹 = 0.015 and 𝜂 = 0.01. The red solid line is the
theoretical result of Eq. (9) and the blue area is the Monte
Carlo simulation result. The inset shows an enlarged por-
tion of the distribution peak, clearly indicating that the
peak center deviates from zero.

We now turn to lattice systems, where each lattice
site has one Ising-spin. Molecular magnets such as Fe8
and Mn12 are this type of spin lattice system:[1−3] at
low temperature, only two ground states |𝑠𝑧 = ±10⟩
are occupied in these systems. In these molecular sys-
tems, Ω0 is the volume of the unit cell of the lattice
and 𝐸𝐷 = 2𝜇0

4𝜋
(𝑔𝑆𝜇𝐵)2

Ω0
, where 𝜇𝐵 is Bohr magneton.

For Fe8 and Mn12, 𝑆 = 10 and 𝑔 ≈ 2. Similar spin
lattice systems have been investigated for the dipolar
line width.[9]

Because all spins are fixed in space in a lattice
system, there is only one spatial configuration. As a
result, the distribution function Eq. (2) becomes[3]

𝐷(𝜉, 𝐹 ) =
𝑁∑︁

𝑚=0

𝐹𝑚(1−𝐹 )𝑁−𝑚
∑︁
{𝑠𝑗}

𝛿
(︁
𝜉−

∑︁
𝑗=1

𝑠𝑗𝑑𝑗(𝑟)
)︁
.

(11)
We use 𝐷(𝜉, 𝐹 ) to distinguish the distribution func-
tion in a spin lattice system from the one in a dilute
gas system. Similarly, we compute its Fourier trans-
form first

𝐷̄(𝑘, 𝐹 ) ≡
∫︁

𝑑𝜉𝐷(𝜉, 𝐹 ) exp(−𝑖𝑘𝜉)

=
𝑁∏︁
𝑗=1

[𝐹 exp(−𝑖𝑘𝑑𝑗)+(1−𝐹 ) exp(𝑖𝑘𝑑𝑗)].
(12)

We have used this equation to compute numerically
how the distribution function 𝐷(𝜉, 𝐹 ) changes with
𝐹 . The results are shown in Fig. 2. When 𝐹 is very
small, the distribution function is a Lorentzian. As
the 𝐹 increases, the distribution function is broadened
with the appearance of side-peaks. When 𝐹 is close
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to 1/2, the side-peaks merge with the main peak and
the distribution function is again a one-peak function.
However, this one-peak function has a Gaussian shape,
instead of Lorentzian. In the following, we analyze in
detail the two limiting cases: 𝐹 ≪ 1 and 𝐹 ≈ 1/2.
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Fig. 2. The change of the local dipolar field distribu-
tion function 𝐷(𝜉, 𝐹 ) of Mn12 with the up-spin fraction
𝐹 . From (a) to (f), 𝐹 = 0.012, 0.05, 0.10, 0.15, 0.30, and
0.50, respectively. All the red solid lines in (b)–(e) are ob-
tained with the reverse Fourier transform of Eq. (12) and
the blue area are Monte Carlo simulation results. In (a),
the red dashed line is obtained from Eq. (16); in (f), the
red dashed line is obtained from Eq. (19). The black solid
lines in (a) and (f) are obtained from Eq. (12). To show
clearly the fitting between the black lines and the red lines
in (a) and (f), the Monte Carlo results for 𝐹 = 0.012 and
𝐹 = 0.50 are not shown.

We consider the limiting case, 𝐹 ≪ 1, which means
that most of the spins in the lattice system are down-
spins. For this case, using Fresnel sine and cosine
integral,[16] we obtain

𝐷̄(𝑘, 𝐹 ) ≈ exp
[︁
𝑖𝑘

𝑁∑︁
𝑗=1

𝑑𝑗 − 𝐹
𝑁∑︁
𝑗=1

(1 − 𝑒−2𝑖𝑘𝑑𝑗 )
]︁

= exp
[︁
− |𝑘|𝐴1 + 𝑖

(︁ 𝑁∑︁
𝑗=1

𝑑𝑗 + 𝐴2

)︁
𝑘
]︁
,
(13)

where

𝐴1 =
16𝜋2𝐸𝐷𝐹

35/2
, (14)

𝐴2 =
4𝜋𝐹𝐸𝐷

3

(︁
− 4

3
+

4

9

√
3 ln

(︀
2 +

√
3
)︀)︁

.
(15)

With a reverse Fourier transform, we arrive at

𝐷(𝜉, 𝐹 ) =
𝐴1/𝜋

𝐴1
2 + (𝜉 +

∑︀𝑁
𝑗=1 𝑑𝑗 + 𝐴2)2

. (16)

This shows that when 𝐹 ≪ 1, the distribution func-
tion 𝐷(𝜉, 𝐹 ) is a Lorentzian with its half-width pro-
portional to the up-spin fraction 𝐹 . This confirms the
numerical result in Fig. 2(a). The summation term,∑︀𝑁

𝑗=1 𝑑𝑗 , is the background field created by a lattice
where all spins are down.

It is not a coincident that the small 𝐹 limit of
the lattice system has a Lorentzian distribution simi-
lar to the gas system. When 𝐹 is small, the averaged

distance between up-spins is much larger than the lat-
tice constant. Consequently, they can be viewed as a
gas floating in the background of a down-spin lattice.
When this small fraction 𝐹 of up-spins is viewed as
a gas, this “gas” has all the spin pointing up and the
fraction 𝐹 should be identified with the gas concen-
tration parameter 𝜂. With these facts in mind, one
can easily derive 𝐷(𝜉, 𝐹 ≪ 1) from 𝑃 (𝜉, 𝐹 ).

When the lattice is populated roughly with equal
numbers of up-spins and down-spins, that is, 𝐹 ∼ 1/2,
Eq. (12) is approximately

ln 𝐷̄(𝑘, 𝐹 ) ≈
𝑁∑︁
𝑗=1

ln
{︁

cos(𝑘𝑑𝑗)
}︁
, (17)

where terms proportional to |𝐹 −1/2| are omitted. In
a cubic lattice such as molecular magnet Mn12, we ar-
gue that 𝑘𝑑𝑗 can always be regarded as small. There
are two reasons. First, when 𝑘 is large, each cosine
function in 𝐷̄(𝑘, 𝐹 ) oscillates very fast and 𝐷̄(𝑘, 𝐹 )
becomes essentially zero. This is confirmed by our
numerical result. Secondly, our computation shows
{𝑑𝑗}max ≈ 0.64. With these considerations, we can
further approximate 𝐷̄(𝑘, 𝐹 ) with a Taylor expansion,

ln 𝐷̄(𝑘, 𝐹 ) ≈ −1

2
𝑘2

𝑁∑︁
𝑗=1

𝑑2𝑗 . (18)

This leads to a Gaussian distribution function

𝐷(𝜉, 𝐹 ∼ 1/2) =
1√︁

2𝜋
∑︀𝑁

𝑗=1 𝑑
2
𝑗

exp
(︁
− 𝜉2

2
∑︀𝑁

𝑗=1 𝑑
2
𝑗

)︁
,

(19)
which is already shown in our numerical result
Fig. 2(f).

There is an intuitive way to understand why the
distribution function becomes Gaussian when 𝐹 ap-
proaches 1/2. These up-spins can be divided into
many small fractions with each fraction contributes
a Lorentzian to the overall distribution. According
to the central limit theorem, the overall distribution
then should be Gaussian. We note that Berkov has
found that the distribution function for a dense gas is
Gaussian[12] due to the spatial correlation. Although
a lattice can be viewed as correlated in space, it is
not apparent that the Gaussian distribution in a spin
lattice system has the same origin as the Gaussian
distribution in a dense gas system. The above intu-
itive understanding seems to suggest that these two
Gaussian distributions have different origins.

We have also checked our results with the Monte
Carlo simulation. Again, we find excellent agreement
with our theoretical results from Eq. (12).

The shape effect of the sample only shifts the peak
in distribution function and we find nearly perfect
agreement between our theoretical calculation[17] and
Monte Carlo simulation.
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Fig. 3. The local dipolar field distributions of the Fe8
system. The blue areas indicate the the Monte Carlo sim-
ulation results and the red solid line is the numerical result
obtained with Eq. (12). (a) 𝐹 = 0.30, (b) 𝐹 = 0.50, (c)
𝐹 = 0.60, and (d) 𝐹 = 0.80.

In the above, we have focused on the cubic lattice
system. Here we consider non-cubic lattice systems,
and use molecular magnet Fe8 as an example. Fe8 has
a triclinic lattice with its shortest axis almost paral-
lel to the easy axis.[17] We have computed the dis-
tribution functions of Fe8 for different fractions, just
as shown in Fig. 3. It is clear that in Fe8 system,
all the distributions have three peaks centered at the
same positions and they differ only by the sizes of each
peaks. This is different from the distribution function
of Mn12, where the peaks change their positions with
𝐹 and even merge into one peak when 𝐹 is either small
or close to 1/2.

The peaks in Fig. 3 are the result of the triclinic lat-
tice structures of Fe8 and the sub-peaks position can
be explained by the nearest spins. We find that all of
these peaks are Gaussian when 𝐹 is not very small.
We have also compared these results with the Monte
Carlo simulation and there is a very good agreement.

For the cubic Mn12 spin lattice system, the situa-
tion becomes different. In this case, all axes in three
directions have the same length and all 64 nearest spin
configurations have to be considered since none of the
64 configurations dominate. The results of the compe-

tition among these 64 spin configurations are shifting
side-peaks seen in Fig. 2.

In summary, we find that the distribution function
is Lorentzian when the up-spin fraction is very small
in both systems. In a lattice system, it changes to a
Gaussian when the fraction approaches one half. In
addition, the asymmetry in lattice can induce multiple
Gaussian peaks in distribution function.
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