
Consider the spatial analogy to the pulse shown in Siegman Fig 9.5: the input

pulse has a positive chirp ( red in front, blue in back). By propagating through a

negatively dispersive delay line, the pulse is compressed to its transform limit; there is

no chirp on the input, and the envelope function ( a sinc) is the Fourier transform of

the input (a rect).

Spatial analogy:

Table 1: time-space analogy

time space
rect rect

positive chirp
converging beam (positive spatial

frequencies ↔ θx < 0 are at positive x)
sinc sinc envelope at focus

Q: How do you get a rect beam with converging wavefront?

A: Use a lens (at finite apeture) to focus an incident plane wave.

Figure 1: get a rect beam with converging wavefront.

⇒ we need to find a way to do something similar in the time domain, i.e. we need

a time lens.

We can also consider the propagation problem from the point of view of a given

source-plane field in the frequency domain:

E(τ, ξ) =
1√
ξ

∫
E0(τ0, 0)ei(τ−τ0)2/2β

′′
ξdτ0

=
1√
ξ

∫
dτ0e

i(τ−τ0)2/2β
′′
ξ

∫
dωA(ω, 0)eiωτ0
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∫
dωA(ω, 0)eiωτ0 is Fourier transform of input field.

reverse order of integration and carry out
∫
dτ0:

E(τ, ξ) =
1√
ξ

∫
dωA(ω, 0)

∫
dτ0e

i(τ−τ0)2/2β
′′
ξeiωτ0

=
1√
ξ

∫
dωA(ω, 0){

√
2πβ ′′ξ

i
eiξβ

′′
ω2/2e−iωτ}

∝
∫
dωA(ω, 0)eiξβ

′′
ω2/2e−iωτ

(Kolner eqn. 25; apart from constants out front which we are ignoring)

The analogous expression for the diffraction problem is:

E(x, z) =

∫
E(ω0, 0)eiω

2
kz/2ke−iωxxdωx

where

ωx = −2π

λ
sin θx ' −

2π

λ
θx

is the ‘spatial frequency’. (note we are following the notation we used in 537, where

the not-necessarily-conventional minus sign is introduced to make the forms of the

Fourier tranforms equavalent. To connect to Siegman’s and Kolner’s notation, we use

kx = −ωx = 2π
λ
θx and Sx = θx

λ
= kx

2π
is refered to as the spatial frequency.)

Note that the physical picture at diffraction is that the higher spatial frequencies

diffract away from the central (zero) spatial frequency, leading to a spatial frequency

‘chirp’. (see Kolner Fig 4) In the time domain, the frequencies ?? the carrier ‘diffract’

away from the carrier.

In both cases, the ‘diffraction’ results from the multiplication of the input spec-
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trum by a quadratic-frequency ‘filter’; the output field (in time or real space) is the

Fourier transform of the ‘filtered’ spectrum.

0.1 Space lenses and Time lenses

Now that we know that free space diffraction is analogous to dispersive pulse propaga-

tion, we might ask what the time-domain equivalent of a lens is

Consider a plane wave incident on a lens:

Figure 2: a plane wave incident on a lens

It is easy to see that the effect of a thin lens on the phase of the input wave can be

described by a transfer function (see Goodman, Fourier Optics)

tl(x, y) = e−ikn∆0e−i
k
2f

(x2+y2)

where ∆0 is max lens thickness, and f is focal length.

The overall phase shift can be ignored. The important thing is that a lens puts on

a quadratic phase modulation in real space. (remember eibt
2
)

Note for future reference that a lens puts new spatial frequencies on the beam. A

monochromatic plane wave has only one spatial frequency; after the lens, the spatial

frequency spectrum is broadened by the lens, and the beam focuses or defocuses.

Following our space-time analogy, let us see what happens if we put a quadratic

phase modulation in time on a pulse:

φ(τ) = − ω0

2fτ
τ 2
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where we call fτ the ‘focal time’.

In general, we might suppose some physical process might induce a temporal phase

change on a pulse, which we could approximate as

ϕ(τ) ' ϕ(τ0) + ϕ
′
(τ0)(τ -τ0)+

1

2
ϕ

′′
(τ0)(τ -τ0)2

Then the effect of the second-order term will be to act as a time lens with

fτ = − ω0

d2ω/dτ 2

Note that putting a quadratic temporal phase on the pulse will change the pulse

spectrum. You will recall from homework #1 that ,while a quadratic frequency-

domain phase could be performed with a linear optical system, the quadratic temporal

phase introduced new spectral components, and this required some nonlinearity in the

system(or at least a non-time-shift-invariant system).

The nonlinear optical effect yielding the most controlled quadratic phase mod-

ulation is the electro-optic effect. We will consider specifically an electro-optic

traveling-wave phase modulator.

Figure 3: transverse electrooptic modulator using a KH2PO4 (KDP) crystal
in which field is applied normal to the direction of propagation.
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Figure 4: traveling wave electrooptic modulator.

We will assume that the optical pulse and modulation signal (V0 cosωmt) are velocity-

modulated, so the propagate together along the e-o crystal.

The index modulation induced by the microwave driving field is

∆n(z, t) = ∆n0 cos(ωmt− kmz)

(note: not a time-shift-invariant system!)

Figure 5: microwave modulation.

We can write the phase modulation at the crystal exit as

Γ(ξ, τ) = Γ0 cosωmτ

where

Γ0 =
ω0∆r0

c
ξ = π

V

Vπ

= peak deviation

Vπ =half wave voltage

5



If the optical pulse is short compared to the microwave period, then

Γ(ξ, τ) ' Γ0[1− (ωmτ)2

2
]

− (ωmτ)2

2
indicates quadratic phase shift, as desired.

d2ϕ

dτ 2
=
d2Γ

dτ 2
= −Γ0ω

2
m ⇒ fτ =

ω0

Γ0ω2
m

The transfer function of the time lens is therefore

Hl(τ) = e−iΓ0eiΓ0(ωmτ)2/2

= e−iΓ0eiω0τ2/2fτ

A temporal version of the f-number may also be obtained: Recall f ∗ = f
D

, where

D =aperture size (diameter) ⇒ need to extend the definition of aperture.

Clearly, there is no hard aperture for the cos-modulated time-lens. We can say,

however, that the aperture is the temporal window in which the phase modulation

is predominantly quadratic.

Kolner’s definition:

Γ ' Γ0[1− (ωmτ)2

2
+

(ωmτ)4

24
]

Within time window |τ | < τa
2

, require the quartic term to be less than 2% of the

quadratic term:

0.02
(ωmτa)

2

2
>

(ωmτa)
4

24
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0.24

ω2
m

> (
τa
2

)2 ⇒ τa ≈
1

ωm

⇒ f#
τ =

fτ
τa
' ω0/Γ0ω

2
m

1/ωm
=

ω0

Γ0ωm

order-of magnitude numbers:

• ω0 ∼ 2× 1015s−1

• ωm ∼ 2π × 1010s−1

• Γ0 ' 2π

• fτ = 2×1015

2π(2π×1010)2
' 95ns

• fτ = 2×1015

2π(2π×1010)
' 5000s (a very slow lens!)

0.2 Aberrations

Recall from physical optics that ideal imaging is obtained as long as the phase is

quadratic in the spatial variables. In our temporal imaging system, aberrations are

introduced if the quartic phase term becomes significant.

The analogy in spatial imaging is spherical aberration.

Figure 6: spherical aberration and its temporal analogy.
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0.3 Temporal Imaging

Finally, we would like to see how to extend the analogy to imaging. In the spatial

domain, we have the familiar picture

Figure 7: free space propagation. (diffraction)

The imaging condition is

1

d0

+
1

di
=

1

f

and the magnification is M = − di
d0

(the minus sign indicating inversion of the image

when both di and d0 are positive and f is positive)

Why bother? If it is possible to construct the analogous imaging system in the time

domain, we could immediately imagine its applications:

1. pulse compressor (start with long pulse; end up with a short one)

2. temporal microscope (image a short pulse into a long one, so it is easier to

measure)

The analogous optical arrangements for spatial and temporal imaging are shown in

Kolner Figs. 6&7
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Figure 8: (a) Configuration for conventional spatial imaging. Output field
envelope E( y

M
, x
M

) is a magnified version of the input field envelope E(x, y)

where M = − di
d0

. (b) Analysis is carried out by cascading the three processes:
input diffraction [quadratic phase transformation in Fourier-space variables
(kx, ky)] ⇒ lens [quadratic phase transformation in real-space variables(x,y)]
⇒ output diffraction.

Figure 9: (a) Temporal imaging configuration. Input and output disper-
sions (shown here as diffraction-grating pairs) play the role of free-space
diffraction while a quadratic phase modulator acts as a lens in the time
domain. Output waveform envelope A(τ/M) is a magnified version of the
input envelope A(τ), where M = −(ξ2d

2β2/dω
2)/(ξ1d

2β1/dω
2). (b) Analysis is

carried out by cascading the three processes: input dispersion [quadratic
phase transformation in frequency domain (ω)]→ time lens [quadratic phase
modulation in time (τ)] → output dispersion. Compare with the spatial
analog shown in Fig 8.
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