
 

Temporal microscope 

 
The analysis of the imaging system can now proceed since we know the transfer functions of 

each of the three stages in the system.  

 

 



 

Again, we assume we are given the source field: 

E(τ, 0) = 𝐹−1{𝐴(𝜔, 0)} 

At the end of the 1st stage of dispersion, the field is  

                            E(τ, 𝜉1) = 𝐹−1{𝐴(𝜔, 0)𝑔1(𝜔, 𝜉1)} 

Where 𝑔1 = 𝑒−𝑖
𝜉1
2

𝛽1
′′𝜔2

= 𝑒−𝑖𝑎𝜔2
 

Immediately after the time lens, the field is  

                       E(τ, 𝜉1 + 𝜖) = 𝐹−1{𝐴(𝜔, 0)𝑔1(𝜔, 𝜉1)} ∙ 𝐻(𝜏) 

Where H(τ) = 𝑒−𝑖𝜔0𝜏2/2𝑓𝜏 = 𝑒𝑖𝜏2/4𝑐  

                       E(τ, 𝜉1 + 𝜖) =
1

2𝜋
𝐹−1{𝐴(𝜔, 0)𝑔1(𝜔, 𝜉1)} ∗ ℎ(𝜔) 

Finally, to get the output, we just propagate the frequency-domain field through the 2nd stage of 

dispersion 

                 E(τ, 𝜉2) =
1

2𝜋
𝐹−1{[(𝐴(𝜔, 0)𝑔1(𝜔, 𝜉1)) ∗ ℎ(𝜔)]𝑔2(𝜔, 𝜉2)} 

Carrying this through explicitly: 

A (𝜔, 0) 𝑔1(𝜔, 𝜉1) ∗ ℎ(𝜔) = ∫ 𝐴(𝜔′, 0)𝑔1(𝜔′, 𝜉1)ℎ(𝜔 − 𝜔′)𝑑𝜔′ ∙ 

=> 

E(τ, 𝜉2) =
1

2𝜋
∫ 𝑑𝜔𝑒𝑖𝜔𝜏𝑔2(𝜔, 𝜉2) 

1

2𝜋
∫ 𝑑𝜔′𝐴(𝜔′, 0)𝑔1(𝜔′, 𝜉1)ℎ(𝜔 − 𝜔′) ∙ 

             =
1

2𝜋
∫ 𝑑𝜔′𝐴(𝜔′, 0)𝑔1(𝜔′, 𝜉1) 

1

2𝜋
∫ 𝑑𝜔𝑒𝑖𝜔𝜏𝑔2(𝜔, 𝜉1)ℎ(𝜔 − 𝜔′) ∙ 

 

         𝑔2 = 𝑒−𝑖𝑏𝜔2
 ,𝑏 =

𝜉2

2
𝛽2

′′ 

h(𝜔 − 𝜔′) = √4𝜋𝑖𝑐e−ib𝜔2
e−ic(𝜔−𝜔′)2

, c=
𝑓𝑇

2𝜔0
 

Ignoring the unimportant constants at front, integral II is  

   II = ∫ 𝑑𝜔 𝑒𝑖𝜔𝜏𝑒−𝑖𝑏𝜔2
𝑒−𝑖𝑐(𝜔−𝜔′)2

 

     =e−ic𝜔′2
∫ 𝑑𝜔 𝑒−𝑖(𝑏+𝑐)𝜔2

𝑒𝑖𝜔(𝜏+2𝑐𝜔′) 

     =e−ic𝜔′2
𝑒𝑖(𝜏+2𝑐𝜔′)2/4(𝑏+𝑐) 

=>E(τ, 𝜉2) =  ∫ 𝑑𝜔′𝐴(𝜔′, 0)𝑒−𝑖𝑎𝜔′2
𝑒−𝑖𝑐𝜔′2

𝑒𝑖(𝜏+2𝑐𝜔′)2/4(𝑏+𝑐) ∙ 

 

= 𝑒𝑖𝜏2/4(𝑏+𝑐) ∫ 𝑑𝜔′𝐴(𝜔′, 0)𝑒−𝑖(𝑎+𝑐)𝜔′2
∗ 𝑒𝑖(4𝑐𝜏𝜔′ + 4𝑐2𝜔′2

)/4(𝑏 + 𝑐) ∙ 

= 𝑒𝑖𝜏2/4(𝑏+𝑐) ∫ 𝑑𝜔′𝐴(𝜔′, 0)𝑒
−𝑖(𝑎+𝑐−

𝑐2

𝑏+𝑐
)𝜔′2

∗ 𝑒𝑖(
𝑐𝜏

𝑏+𝑐
)𝜔′ ∙ 

Two things to note: 

(1) As usual, the output is the Fourier transform of an input spectrum which has been multiplied 

by a spectral quadratic phase  

(2) The time faction in the Fourier transform has been scaled by c/(b+c) 

 

 

 



 

Imaging condition 

We can say that the output pulse is an “image” of the input pulse if the two waveforms are 

identical, except for a possible change in time scale (i.e. magnification or demagnification). 

This will be the case if the quadratic phase in the integrand vanishes (remember that it’s the 

quadratic phase term that describes dispersion and hence changes in pulse shape). 

 

If the quadratic phase vanishes, then 

ϵ(τ, ξ2) = 𝑒
𝑖𝜏2

4(𝑏+𝑐) ∫ 𝑑𝜔′ 𝐴(𝜔′, 0) eiτ′ω′ 

𝑒
𝑖𝜏2

4(𝑏+𝑐)               overall quadratic phase     

∫ 𝑑𝜔′ 𝐴(𝜔′, 0) eiτ′ω′   F.T. of input field spectrum    

but timescale is shifted (magnification) 

 

 

Quadratic phase term=0: 

a + c −
𝑐2

𝑏 + 𝑐
= 0 

ab+ac+bc+𝑐2 − 𝑐2 = 0 

ac+bc=-ab  
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Note the strong resemblance to the spatial imaging condition: 

                          

1

𝑑0
+

1

𝑑𝑖
=

1

𝑓
 

(Of course, unlike spatial diffraction, we can control the rate of pulse spreading via 𝛽2
′′,so we 

can adjust both 𝜉1𝑎𝑛𝑑  𝛽1
′′ to adjust the imaging condition.) 

 

Alternative form:       

1

𝜑1
′′ +

1

𝜑2
′′ = −

𝜔0

𝑓𝑇
 

One difference:  the minus sign 

Spatial diffraction: high frequencies diffract (i.e. spread out) more rapidly with propagation 

than low spatial frequencies  

 



 

Normal dispersion: high frequencies travel more slowly with propagation than low 

frequencies 

 

 We might say that propagation leads to negative chirp for diffraction 

Positive chirp for normally dispersive propagation 

 

To get real images, the lens must provide phase modulation in the opposite sense than the 

dispersion propagation. 

 A positive space lens has the opposite phase curvature from a “positive” time lens 

 

We noted earlier that the output waveform is equal to the input waveform apart from an 

overall phase factor and, more importantly, a modified time scale. 

=>define magnification 

M =
𝜏

𝜏′
=

𝑏 + 𝑐

𝑐
= −

𝑏

𝑎
= −
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1
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"
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This actually works! D. Bloom’s group at Stanford has huilt a number of time lenses using 

various kinds of electro-optic modulators. Some of their results are given in A. Godil et al. 

Appl. Phys. Lett. 62, 1047(1993). They used 

                  𝜔𝑚 = 2𝜋 ∗ 5.2 𝐺𝐻𝑧,      λ0 = 1.06𝜇𝑚   

                   Γ0 = 12 𝑟𝑎𝑑𝑖𝑢𝑠 (=A in their notation) 

Aperture 𝜏𝑎 = 31𝑝𝑠 

 45 ps pulses focused (i.e. compressed, i.e. demagnified) to 6.7 ps 

                      Γ0 = 45 𝑟𝑎𝑑 

 45 ps -> 1.9 ps 

 

Resolution 

 

Recall in spatial imaging systems the spatial resolution is limited by diffraction by whatever 

limits the aperture D of the system (i. e. the pupil function) 

 

One finds a resolution that looks something like  

                           Δx~λf ∗= λ
𝑓

𝐷
 

(apart from a proportionality constant of order unity). 

 

In general, one can express the output field as a convolution of the input field with the 

impulse response of the system: 

                  E(τ, 𝜉) = ∫ ℎ𝑠(𝜏 − 𝜏′)𝐸(𝜏′, 0)𝑑𝜏′ 

If the aperture of the system is infinitely wide (as we assumed in our imaging calculation), then 

the impulse response is just a delta-function (the waveform is undistorted). Kolner has shown 

that, with no aperture the impulse response of the temporal imaging system is  

               ℎ𝑠(𝜏 − 𝜏′) =
1

√𝑀
𝑒

𝑖𝜔0𝜏2

2𝑀𝑓𝑇 𝛿(𝜏 − 𝜏′) 



 

Introduction of a finite aperture broadens the δ-function, thus limiting the temporal scale of the 

fastest features on the pulse. 

Note: if 𝐸(𝜏′, 0) = 𝐸0ℎ(𝜏) 

 

The temporal microscope is a special case 

1

 𝑑𝑖
+

1

𝑑0
=

1

𝑓
  => f=d0 

For this case, Koler has shown that the duration of the minimum resoluble feature on the 

input pulse is  

δ𝜏𝑚 = 𝑇0𝑓𝑇
∗, 𝑇0 =

2𝜋

𝜔0
= 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 

 

This looks just like the spatial case, with the resolution determined by the f-numberand the 

fundamental period (temporal and spatial) of the carrier wave. 

 

It can be shown that(again, for the temporal microscope) 

δ𝜏𝑚 =
1

𝛤0𝑓𝑚
=

1

∆𝑓
, 

where ∆f is just the new bandwidth of the chirped spectrum imposed by the modulator, 

which makes good intuitive sense. 

 

One important difference between the spatial and temporal imaging systems: 

 

Typically, for a good spatial imaging system, the pupil function is a hard aperture 

                       

 

For a temporal imaging system, this is generally not the case. The aperture is not really 

something that prevents light from getting through if it’s not within the aperture 

 



 

 

 

Rather, it’s just a measure of the pulse width of the primarily quadratic part of the phase of 

the lens: 

               

 

Thus components of the pulse outside 𝜏𝑚 will not be neglected, but will be distorted in 

time(i.e. higher-order phase errors, leading to wings on the pulse) 


