Lecture 33
· Field profile 
[image: image80.emf]
Note that diffraction is stronger for a smaller spot size:
[image: image1.emf]
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the smaller the waist , the shorter the Rayleigh range 
Beam spreading due to diffraction:
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· Large 
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 and vice versa 
Wavefront curvature:
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[image: image11.emf]
Beam power + aperture transmission (Siegman 17.1)

def. 
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where 
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total power in beam 
equivalent “top-hat”　beam with the same peak intensity and the same total power P has diameter 
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· See Siegman fig.17.2.
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For a Gaussian beam passing through a circular aperture the total power getting through is 

power trans.=
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-see Siegman fig.17.3

dia. d =
[image: image21.wmf]p
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=>get 99% through 

However, even though most of the power gets through, significant diffraction effects are seen (as “ripple” on the beam profile – we’ll shortly see where that comes from). To get ripple < 1%, need 
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 (see Siegman fig.17.4).
Gaussian Beam Propagation + ABCD Matrices 

(following Milonni + Eberly 14.6 )
We have seen that a Gaussian beam remains Gaussian as it propagates in free space, and that the beam radius and phase front radius of curvature (
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 respectively) vary according to the formulas given above.
Now we want to see how q(z)－which contains both w and R – changes on propagation.
Recall  
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1. Free space propagation 
If 
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Note that this could be written (with malice aforethought)
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= free-space ray matrix 
2. Propagation through a thin lens
[image: image32.emf]
A Gaussian beam incident from the left has wavefront radius
[image: image33.wmf]1

R

, which is the same as a spherical wave emanating from the object point at a distance S would have.
The lens (being with) will not change the beam radius 
· 
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The beam will have a wavefront radius 
[image: image35.wmf]2
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 on the right. By the imaging law, it will have the same radius as a spherical wave converging to the image point at a distance
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Sign convention: 
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Relating the q-parameters, 
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Thus 
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Where 
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Which is just the ABCD ray matrix for a thin lens.

We have only dealt with two examples, but the fact that the Gaussian beam wavefronts are spherical allows the same argument we gave for transformation of wavefronts on P.214 to be given for Gaussian beams.

Thus the transformation of a Gaussian beam by an optical system is given by 
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Where 
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= ray matrix of geometrical optics 
Remember that ABCD matrices were derived for paraxial rays, which form the normals to spherical wavefronts. Since Gaussian beams are paraxial waves, their phase fronts are spherical, and thus transform in the same way.
Example：Focusing a Gaussian beam 
   [image: image47.emf]
(usually
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Incident beam: 
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Propagation:
[image: image50.wmf]d
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Equate real and imaginary parts:
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The waist of the focused beam occurs when 
[image: image53.wmf](
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Note that if
[image: image55.wmf]0
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, then d=f (geometrical optics result).
(i.e. a well-collimated input beam focuses at the “focal length”).
At the beam waist, the spot size is 
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Again, note that for
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Define beam diameters, 
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Define f-number 
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(note that this is the f-number determined by the input beam diameter, NOT the lens diameter!)
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Recall diffraction of a plane wave by a circular aperture => 
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(we will show this shortly); they are very close to a factor of 2 difference.
Ultimate focusing: the fastest lenses of sufficient quality to give “diffraction –limited” performance have 
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   Smallest achievable focal spot
[image: image66.emf]
The Gouy Effect 

Back to page 336, we found that the electric field had a plane-wave-like phase factor
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Where 
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As usual, we put the beam waist at the origin, so that the phase 
[image: image69.wmf]f

vs. propagation is 
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[image: image71.wmf]®

Thus there is a 
[image: image72.wmf]p

 phase shift in the wave as it passes through focus, relative to the phase an ideal plane wave would have. This phase shift is known as the Gouy effect.

· See Siegman fig.17.16 : wave fronts shift forward by 
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 when going through focus 
· Mathematically, we can see how this arises by writing the paraxial wave eqn. as 
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A plane wave would have 
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 there would be no excess phase shift.
A beam, however, has a field which is confined in the transverse direction, so 
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 ”accumulates” an additional phase with propagation. It accumulates the most phase where 
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 is largest, i.e. within a Rayleigh range or two of the focus.
· See also Feng+Winful, opt lett.26,485(2001)
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