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Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattice
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The superfluidity of Bose-Einstein condensates~BECs! in optical lattices is investigated. Apart from the
usual Landau instability, which occurs when a BEC flows faster than the speed of sound, the BEC can also
suffer a dynamical instability, resulting in period doubling and other sorts of symmetry breaking of the system.
Such an instability plays a crucial role in the dissipative motion of a trapped BEC in an optical lattice recently
observed@Burgeret al., Phys. Rev. Lett.86, 4447~2001!#.
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Optical lattices have long been used to manipulate ul
cold atoms, with applications ranging from beam splitters@1#
and accelerators@2,3# to lithography @4#. There are now
growing interests in replacing the cold atoms with Bos
Einstein condensates~BECs! of alkali atoms@5–7# to ex-
plore the effects of coherence, atomic interaction, and su
fluidity, with important applications in atom lasers@9# and
high-precision interferometry@10#.

In this paper, we investigate the superfluidity and ins
bilities of BECs in optical lattices. In free space, the sup
flow of a uniform BEC is represented by a plane wav
which has Landau instability when it travels faster than
sound. In an optical lattice, the natural objects of concern
the BEC Bloch waves, whose amplitudes are modulated w
the same periodicity as the lattice. In the central region of
Brillouin zone of the lowest band, they are found to be lo
energy minima against all sorts of perturbations and t
represent the superflows of the BEC in optical lattices.
sufficiently strong repulsive interactions between the ato
the superfluidity region can extend over the entire Brillou
zone; but for weaker interaction, Landau instability can o
cur in the outer regions of the zone, where the Bloch wa
become energy saddle points. Many of the Bloch states w
Landau instability can even be dynamically unstable in t
small initial disturbances around them grow exponentially
time, resulting in period doubling and other forms of spo
taneous breaking of the periodicity of the system. This
namical instability is unique to BEC Bloch waves and is n
present in BEC plane waves in free space. We map out
dangerous zones of the dynamical instability, characterize
growth rates, and discuss the experimental consequence

We consider the situation of a one-dimensional opti
lattice in which the motion in the perpendicular directio
are confined@8# or can be disregarded@7#. We treat the
atomic interaction with the mean-field theory, and obtain
grand-canonical Hamiltonian

H5E
2`

`

dxH f* S 2
1

2

]2

]x2 1v cosxDf1
c

2
ufu42mufu2J ,

~1!

where all the variables are scaled to be dimensionless by
system’s basic parameters, the atomic massm, the wave
numberkL of the two laser lights that generate the optic
lattice, and the average densityn0 of the BEC. The chemica
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potentialm and the strength of the periodic potentialv are in
units of 4\2kL

2/m, the wave functionf is in units ofAn0, x
is in units of 1/2kL , and t is in units of m/4\kL

2 . The cou-
pling constantc5pn0as /kL

2 , where as.0 is the s-wave
scattering length.

Hamiltonian ~1! is extremized by states in the form o
Bloch waves,fk(x)5eikxwk(x), wherewk(x) is of the pe-
riod of the optical lattice and can be expanded as a Fou
series. To find the numerical solution of a Bloch state in
lowest band,wk(x), we truncate the series up to theNth term
wk(x)5(2N

N ameimx ~we usedN510). The numerical solu-
tion is obtained by varying$am% so that the wave function
wk(x) minimizes the system’s total energy. The accuracy
checked by substituting the solutions into the Gro
Pitaevskii equation,

2
1

2

]2

]x2f1v cosxf1cufu2f5mf,

which is obtained by the variation of Hamiltonian~1!.
To determine the superfluidity of these Bloch states,

need to find out if they remain energy minima against p
turbations that break the periodicity. These perturbations
be decomposed into different modes labeled byq,

dwk~x,q!5uk~x,q!eiqx1vk* ~x,q!e2 iqx, ~2!

whereq ranges between21/2 and 1/2 and the perturbatio
functionsuk andvk are of periodicity of 2p in x. Since the
system is periodic, the quadratic form of the energy deviat
from the Bloch statefk is block diagonal inq, with each
block given by

dEk5E
2`

`

dx~uk* ,vk* !Mk~q!S uk

vk
D , ~3!

where

Mk~q!5S L~k1q! cwk
2

cwk*
2 L~2k1q!

D , ~4!

with

L~k!52
1

2 S ]

]x
1 ik D 2

1v cosx2m12cuwku2. ~5!
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If Mk(q) is positive definite for all21/2<q<1/2, the Bloch
wavefk is a local minimum. Otherwise,dEk can be nega-
tive for someq, and the Bloch wave is a saddle point.

We first consider the special casev50, BEC in free
space, where the Bloch statefk becomes a plane waveeikx.
The operatorMk(q) becomes a 232 matrix

Mk~q!5S q2/21kq1c c

c q2/22kq1cD , ~6!

whose eigenvalues are found easily as

l65
q2

2
1c6Ak2q21c2. ~7!

Sincel1 is always positive,Mk(q) fails to be positive defi-
nite only whenl2<0, or equivalently,uku>Aq2/41c. It
immediately follows that the BEC floweikx becomes a
saddle point when the flow speed exceeds the sound sp
uku.Ac. This is exactly the Landau condition for the brea
down of superfluidity@11#, which has recently been con
firmed experimentally on BEC@12#.

The stability phase diagrams for BEC Bloch waves
shown in the panels of Fig. 1, where different values ov
andc are considered. The results have reflection symmetr
k and q, so we only show the parameter region, 0<k<1/2
and 0<q<1/2. In the shaded area~light or dark! of each
panel, the matrixMk(q) has negative eigenvalues, and t
corresponding Bloch statesfk are saddle points and hav
Landau instability. For those values ofk outside the shaded
area, the Bloch states are local energy minima and repre
superflows. The superflow region expands with increas
atomic interactionc, and occupies the entire Brillouin zon
for sufficiently largec. On the other hand, the lattice pote
tial strengthv does not affect the superflow region ve
much as we see in each row. The phase boundaries fv
!1 are well reproduced from the analytical expressionk
5Aq2/41c for v50, which is plotted as triangles in the firs
column.

A saddle-point Bloch statefk can still be dynamically
stable in that small deviations from it remain small in t
course of time evolution if no external persistent pertur
tions are present. This is the case for all Bloch states eithe
the absence of atomic interactions or periodic potenti
When both factors are present, many of the saddle-p
Bloch states become dynamically unstable against cer
perturbation modesq, shown as the dark-shaded regions
Fig. 1. These results are obtained from the linear stab
analysis of the Gross-Pitaevskii equation@13#,

i
]

]t
f52

1

2

]2f

]x2 1v cos~x!f1cufu2f, ~8!

which governs the dynamics of the system. A Bloch statefk
is a stationary solution of this equation, depending on ti
only through the phase factore2 imt. Writing the deviation in
a form similar to Eq.~2!, and expanding the above equatio
to first order, we find
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The dynamical stability of the Bloch statefk is determined
by the eigenvalues«k(q) of the matrixsMk(q). If they are
real for all 21/2<q<1/2, the state is dynamically stable
otherwise it is dynamically unstable.

Before discussing our detailed results on the dynam
instability, we pause here to make some general remark

~i! When all the eigenvalues«k(q) are real, the motions
around the Bloch statefk are oscillations, which can be
quantized to yield the phonon excitations@11,14#. The tradi-
tional Bogoliubov approach yields the same matrixsMk(q)
for the phonon spectrum. However, the bosonic commuta
relation for the phonon operators imposes the skewed
malization conditionX†sX51, which selects only half of all
the modes. The other half, satisfyingX†sX521, will be
called antiphonon modes for ease of reference, but t
really do not represent physical degrees of freedom indep
dent of the phonons.

FIG. 1. Stability phase diagrams of BEC Bloch states in opti
lattices.k is the wave number of BEC Bloch states,q denotes the
wave number of perturbation modes. In the shaded~light or dark!
area, the perturbation mode has negative excitation energy; in
dark shaded area, the mode grows or decays exponentially in t
The triangles in~a.1–a.4! represent the boundary,q2/41c5k2, of
saddle point regions atv50. The solid dots in the first column ar
from the analytical results of Eq.~12!. The circles in~b.1! and~c.1!
are based on the analytical expression~13!. The dashed lines indi-
cate the most unstable modes for each Bloch statek. k andq are in
units of 2kL .
3-2
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~ii ! When the Bloch state is a local minimum@Mk(q)
positive definite#, the dynamical eigenvalues«k(q) of
sMk(q) are all real and the phonon branch of the spectr
is positive. The key to the proof is to notice that

«k~q!X†sX5X†Mk~q!X ~10!

for an eigenvectorX of sMk(q). Because the right-hand sid
is positive andX†sX is real,«k(q) is real and has the sam
sign asX†sX. The physical meaning of this theorem is th
when it is a local minimum, the Bloch statefk is dynami-
cally stable and its phonon excitations are not energetic
favored.

~iii ! Because the matrixsMk(q) is non-Hermitian and
real~when expressed in the momentum representation!, com-
plex eigenvalues can only appear in conjugate pairs, co
sponding to modes growing or decaying exponentially
rates given by the imaginary part of the eigenvalues. Beca
both the quadratic forms in Eq.~10! are real, they must van
ish when«k(q) is complex. It is then impossible to enforc
the normalization conditionX†sX51, corresponding to the
fact that such modes cannot be quantized.

We now present our detailed results on the dynam
stability. Again, we first look at the casev50, where the
eigenvalues ofsMk(q) are

«6~q!5kq6Aq2c1q4/4. ~11!

These eigenvalues are always real; the BEC flows in
space are always dynamically stable. WhenvÞ0, the situa-
tion is totally different: the eigenvalues«k(q) of sMk(q)
can be complex and Bloch states can be dynamically
stable. The dark-shaded areas in Fig. 1 are the places w
these«k(q) are complex.

In the first column of Fig. 1, wherev!1, the dark-shaded
areas are like broadened curves. These curves are the
tions of «1(q21)5«2(q),

k5Aq2c1q4/41A~q21!2c1~q21!4/4, ~12!

which are plotted as solid dots in Fig. 1. This is the reson
condition for a phonon mode to couple with an antiphon
mode by first-order Bragg scattering. The resonance is n
essary because the complex eigenvalues can appear on
pairs, and they must come from a pair of real degenera
eigenvalues. Resonances within the phonon spectrum
within the antiphonon spectrum do not give rise to dynami
instability; they only generate gaps in the spectra. Someh
in order to produce a mode with zero normalization, o
must couple a pair of modes with opposite normalization

In the first row of Fig. 1, we have another extreme ca
c!v. The open circles along the left edges of these t
dark-shaded areas are given by

E1~k1q!2E1~k!5E1~k!2E1~k2q!, ~13!

where E1(k) is the lowest Bloch band of H05
21/2(]2/]x2)1v cosx. Whenc50, this periodic system is
linear; the excitation spectrum just corresponds to transiti
from the condensate of energyE1(k) to other Bloch states o
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energyEn(k1q), or vice versa. The above equation is ju
the resonant condition between such excitations in the low
band (n51). Alternatively, this condition may be viewed a
the energy and momentum conservation for two particles
the condensate to interact and decay into two different Bl
statesE1(k1q) andE1(k2q).

One common feature of all the diagrams in Fig. 1 is th
there is a critical Bloch wave numberkd beyond which the
Bloch statesfk are dynamically unstable. The onset instab
ity at kd always corresponds toq51/2. In other words, if we
drive the Bloch statefk from k50 to k51/2 the first un-
stable mode appearing is alwaysq561/2, which represents
period doubling. Only fork.kd can longer wavelength in
stabilities occur. The growth of these unstable modes dri
the system far away from the Bloch state and spontaneo
breaks the translation symmetry of the system. The crit
value of the Bloch wave number for the case ofv!1 is
found to bekd5(c11/16)1/2 by substitutingq5 1

2 into Eq.
~12!. In the other extreme case,c!v, the same substitution
in Eq. ~13! yieldskd51/4 with the help of periodicity of the
band energy. Based on these results and the diagrams in
1, we find thatkd> 1

4 .
The dynamical instability discovered in this work shou

be observable in experiments. We have mapped out the
gerous zones of dynamical instability, which give us a go
sense of where to look for unstable Bloch states and mo
of instability. In Fig. 2, the rate of growthr for the most
prominent mode~dashed lines in Fig. 1! of each Bloch state
k is plotted in Fig. 2. The physical unit of the growth rate
4\kL

2/m, which is 4.0 ms21 for sodium and 0.16ms21 for
rubidium. Since the lifetime of BECs can be up to the ord
of seconds@15#, these growth rates in Fig. 2 are significant.
is possible to directly observe the change of periodicity

FIG. 2. Growth rates of the most unstable modes of each Bl
statefk . The erratic behavior of some curves aroundk51/2 is due
to the difficulty in finding the accurate Bloch wavesfk in this
region whenc.v @17#. k is in units of 2kL , the growth rate is in
units of 4\kL

2/m.
3-3
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the BEC due to the dynamical instability, by monitoring t
Bragg scattering of a probing laser light by the BEC clo
@16#. This dynamical instability can also cause the disrupt
of Bloch oscillations@17#.

In a recent experiment, the superfluidity and instabilit
of a BEC in an optical lattice was studied using a cig
shaped~one-dimensional! magnetic trap@8#. After the BEC
was prepared in the trap in the presence of the optical lat
the trap was suddenly shifted byDx along the longitudinal
direction. This is equivalent to displacing the whole BEC
the center of the harmonic trap then releasing it. The sub
quent oscillations of the BEC are nondamped if the init
displacement is small, but become dissipative ifDx is over a
critical valueDxc . This qualitatively agrees with our stabi
ity diagrams, because largerDx implies larger velocity and
therefore largerk. The dissipative behavior was explained
a manifestation of the Landau instability, but the dynami
06160
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instability discussed here is likely to play a crucial role in o
view. First, the experiment hasv;0.2 andc;0.02, where
the dynamical instability is rampant according to Fig. 2. S
ond,Dxc increases with decreasing lattice potentialv, which
is in accordance with the trend of the growth rate as a fu
tion of v andk shown in the figure. Third, there is no diss
pation when the BEC density is low, where Landau instab
ity should be very strong but dynamical instability should
very weak according to Fig. 1. However, more detail
analyses are needed to take account of the effects of in
mogeneity and thermal cloud before a quantitative comp
son with the experiment.
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