
Lecture 6   Propagation in a conducting medium
So far we have considered propagation only in a uniform “lossless dielectric”, where we have 
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 being real constants.

In a conducting medium we must also take into account the current that can be induced in the medium by the electric field of an e.m. wave .We assume the simplest case, which is 
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Now Maxwell’s equations are
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The derivation of the wave eqn. goes exactly as before (taking
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), but we get an extra term:  
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Such an equation, with both first and second time derivations, is known as a “telegraph equation”
We shall see below that the first-time-derivative results in damping of the wave.

Harmonic waves:

Consider solutions of the form
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The wave equation then becomes


[image: image14.wmf](

)

(

)

(

)

22

wmewms

Ñ=-+

uvuvuv

rrr

ErEriEr


Or 
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This looks just like the wave equation we had before, but now it behaves as if the dielectric constant is complex.

Def. 
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(dimensionless form) complex dielectric constant

=> 
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 Complex Helmholtz eqn.

We can still write this in the familiar form of the Helmholtz equation, but now the wave vector must be complex:
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Where 
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If we want to write 
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 in terms of an index of refraction, then it must also be complex:
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Where 
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 can be written in terms of its real and imaginary parts as 
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Where 
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is called the “extinction coefficient”
To see the consequences of a nonzero conductivity or imaginary part of the dielectric constant, consider a plane wave propagating in the z-direction.
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: the usual harmonic wave 
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Some straightforward algebra (e.g, Guenther, P.52) will allow n and 
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to be expressed in terms of
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For typical metals,
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And thus
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 (Equivalent to lipson’s 
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i.e. the skin depth goes as 
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In the visible (optical) region of the spectrum, the skin depth of typical metals is on the order of 10 Å

It should be noted that this is the simplest possible model for propagation in a conducting medium. A complete model of the frequency dependence of the propagation requires a more sophisticated model of the response of the metal to the applied field to obtain 
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.The color of the metal such as gold and copper can only be accounted for by a quantum-mechanical calculation of the energy band structure of the metal. Further treatments may be found in Born+ Wolf chap14, or any text on solid state physics.
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Reflection from a conductor

You will notice that the main assumptions we made in deriving the Fresnel equations for reflection from a dielectric wave that (i)the material response is linear, and (ii) 
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 are constant on each side of the interface. The boundary conditions and thus the reflectivity formulas therefore hold just as well for a complex dielectric constant as for a real one.

Thus the Fresnel field reflectivity’s given above (P, 30, 32) apply, but 
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 is complex
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The fact that the reflection coefficient becomes complex means there is a phase shift between incident and reflected waves. Thus linearly polarized light can become elliptically polarized on reflection under certain circumstances (see Born+Wolf for a discussion)

We will not concern ourselves with the details of the general case, but restrict our attention solely to power reflection at normal incidence.
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Note that if the index were purely imaginary, i.e.
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, then we would have
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  => Perfect reflector

Indeed, the imaginary part of the dielectric constant does dominate over the real part, and very high reflectivity (70~95%) are observed for most (good) metals.

_1436987969.unknown

_1437303993.unknown

_1440314003.unknown

_1440954612.unknown

_1440954710.unknown

_1440954711.unknown

_1440954709.unknown

_1440954708.unknown

_1440315330.unknown

_1440315701.unknown

_1440954598.unknown

_1440315572.unknown

_1440314013.unknown

_1440313940.unknown

_1440313952.unknown

_1437304090.unknown

_1436989445.unknown

_1436990900.unknown

_1437066292.unknown

_1437067620.unknown

_1437067713.unknown

_1437067527.unknown

_1436991015.unknown

_1436990558.unknown

_1436990573.unknown

_1436989541.unknown

_1436988605.unknown

_1436988670.unknown

_1436988681.unknown

_1436988656.unknown

_1436988254.unknown

_1436988444.unknown

_1436988225.unknown

_1436986260.unknown

_1436987491.unknown

_1436987599.unknown

_1436987611.unknown

_1436987519.unknown

_1436987235.unknown

_1436987398.unknown

_1436986973.unknown

_1436985255.unknown

_1436985491.unknown

_1436985872.unknown

_1436985478.unknown

_1436985228.unknown

_1436985245.unknown

_1436985215.unknown

