Lecture 14
This is an easy equation to solve by

E=E,e"

= F8=—i%8:>F=—i§(}('+i}(")

ﬂ " —i ﬂ an2-iAf,2

or F=E;( E;(':>8(Z)=goe

Def.

a, (a)) = g;g” = absorption coefficient

- Remember y"oc—y, <0—>¢, <0

=le(z)| = Ee ™"

Exponential attenuation with propagation*(*sometimes called “Beer’s Law”)

- Note that the spectrum of the absorption coefficient is the same as that of the
imaginary part of the susceptibility , i.e. a Lorentzian

- This formulation is especially useful in laser theory , where you will find that

a, > 0 in a medium with a population inversion => then get exponential gain ,or

amplification

8(2) = goeamz—iAﬂmz E (a’ Z) _ Eoeamz—iAﬁmzeiwtz

We can also define:

B

E}('(a)) = phase shift factor

ABy, =

(A,BmZ: phase shift accumulated by the wave on propagating a distance z),

relative to vacuum phase shift dispersive lineshape.
Now we can go back to the plot on P.95 + understand the frequency-dependence of the index of
refraction. At each resonance, the index shows a dispersive line shape, following the real part of

the susceptibility.

Note the “anomalous dispersion” near the center of an absorption resonance!
Final note: the above calculation is valid for a dilute gas, in which case the amplitude change and
phase shift occur on a scale much longer than a wavelength. (It is also adaptable in a very

straightforward way to resonant absorption and dispersion of atoms incorporated at not-too-high



a density into a host dielectric, which is very useful for laser theory .Example include Nd ions in

glass, or titanium in sapphire .)

However, if the atoms are very close, i.e. the atoms form a dense dielectric, then some

modifications are required to the model.
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Dense dielectric

When light interacts with individual atoms, the polarization induced in the atom is proportional

to the applied electric field. Often one writes for a single atom:



ji=—eX=aE (a=-=)

X
N

When « is the “polarizability” of the atom or molecule.

Our assumption in the treatment above has been that the atoms are sufficiently far apart (i.e. the
system is “sufficiently dilute”) that they do not interact. However, if the atoms are close, then a
dipole moment on one atom can_induce a dipole moment on another.

Therefore, the dipole moment induced in a green molecule is the sum of the moment induced by
the_external applied field and the moment induced by the other dipoles surrounding the
molecule.

The useful way of expressing this is to say we still have the form = aE but the appropriate
field is not the external applied field but the “local field”, where

E

loc = €xternal field + field due to surrounding dipoles.

The full calculation of the field would take us too far afield; most texts on electromagnetic theory
carry out the derivation (at least for d.c. fields), and | have induced a copy of a section from Reitz,
Milford, and Christy’s Foundations of Electromagnetic Theory. The basic idea is to consider a

molecule in a void inside a uniform dielectric .The dielectric has a macroscopic polarization P .

gy
EAe Z
P

The local field inside the void is shown to be

E+iP
3g,

E

loc —
Where E = external applied field.
It is the local field which induces a polarization on our molecule:

=ak,

—

As before, we can make the connection P= Nz, provided our equation of motion for P

includes dephasing as well as energy decay. Thus we have (since the polarization is driven by local
fields)



dt? )| ) dt m " m 3g,
2p ») 2 2

d|23+ }/+id_P g_Ne ﬁ:NeE

dt T, ) dt 3g,m m

2

The quantity is often called the plasma frequency (see Guenther), even though we are

gM
considering a model with bound electrons, not free electrons. Thus we have

d?pP 2 |dP

+ 7+ —
dt? 4 T, ) dt

2
NeE

+a)(;zl5=

2
w,
Where a)(;2 = a)o2 -—x

3

Thus the effect of the local field is to red-shift the resonance frequency. From a classical point of
view, this is not all that important, since we cannot predict the resonance frequencies @, , which

we consider to be an experimentally determined parameter.

The main significance of local fields are:

(i) In some sense , they provide a connection between a microscopic or atomic theory and a
macroscopic quantity , the dielectric constant .This is usually done via the Lorentz-lorenz
equation:

&-1 Na

L =—— where &=¢,&, asusual,
g +2 3s,

which you will derive in the homework (Born+Wolf 2.3.3)
(ii) Local fields are sometimes important in nonlinear optics, particularly in calculations of

the nonlinear susceptibility.

Surprisingly, the Lorentz-lorenz shift was predicted in the late 19" century, but was not

unambiguously experimentally until 1991!
Ref.: J.J. Mark, etal., PRL67,972(1991)
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niform ;
: polar-
lly with r
ined at = -
uniform % In the preceding chapter we were concerned with the macroscopic aspects of
Dinthe & dielectric polarization, and it was shown how in many cases the polarization could
cctsdue be taken into account through the introduction of a dielectric constant. In this
= way the electric field could be computed directly from a consideration of the
vined at g external charge distribution. Although reference was made to the molecules of the
uniform = in (‘haprgrd am ncr-nmr- treatment of the material was
letel™. 3 not carried Lhrough in detail, and the over- all picture that was presented was
b)in ‘5 certainly from the macroscopic point of view. We should now like to examine the
we(c)in B9 molecular nature of the dielectric, and see how the electric field responsible for
ccofthe 3 polarizing the molecule is related to the macroscopic electric field. Furthermore.
y s on the basis of a simple molecular model it is possible to understand the linear
“;'::‘c“;; i behavior that is characteristic of a large class of dielectric materials.
’
wditions, .,
ceofthe & 5-1 MOLECULAR FIELD IN A DIELECTRIC
2 The electric field that is responsible for polarizing a molecule of the dielectric is
ovethat called the molecular field, E,,. This is the electric field at a molecular position in
i the dielectric: it is produced by all external sources and by all polarized molecules
in the dielectric with the exception of the one molecule at the point under consider-
ation. It is evident that E,, need not be the same as the macroscopic electric field
iformin 38 because, as was discussed in Section 4-3, the latter quantity is related to the force
nine this = on a test charge that is large in comparison with molecular dimensions.
isinthe § The molecular field may be calculated in the following way. Let us cut out a
e V-P & small piece of the dielectric, leaving a spherical cavity surrounding the point at
asideand & which the molecular field is to be computed. The dislectric that is left will be
dielectric treated as a continuum, i.e., from the macroscopic point of view. Now we put the
& dielectric back into the cavity, molecule by molecule, except for the molecule at
s relation the center of the cavity where we wish to compute the molecular field. The
pole field ¥ molecules that have just been replaced are to be treated, not as a continuum, but

as individual dipoles. The procedure just outlined can be justified only if the result

101



102 Microscopic Theory of Dielectrics

of the calculation is independent of the size of the cavity; we shall see that under
certain conditions this is indeed the case.

Let us suppose that the thin dielectric sample has been polarized by placing it
in the uniform electric field between two parallel plates which are oppositely
charged, as shown in Fig 5-1(a). It will be assumed that the polarization is
uniform on a macroscopic scale (i.e., V - P = 0), and that P is parallel to the field
producing it. The part of the dielectric outside the cavity may be replaced by a
system of polarization charges as shown in Fig. 5-1(b), whence the electricfield at
the center of the cavity may be written as

E.=E . +E,+E, +E. (5-1)

Here E, is the primary electric field due to the charged parallel plates, E, is the
depolarizing field due to polarization charge on the outside surfaces of the dielec-
tric, E, is due to polarization charge on the cavity surface S, and E'is due to all of
the dipoles inside of S. Although we are not concerned with the explicit form of E,,
it is evident that if the dimensions of the plates are large compared with their
separation, E, = (1/¢,)o, where o is the surface charge density. The depolarizing
field is also produced by two parallel planes of charge, this time with the density

op. Since gp = P,= +P,
E,= ——P. (5-2)

€
Let us write the macroscopic electric field in the dielectric without a subscript,
that is, E. Since the normal component of the electric displacement D is contin-
uous across the vacuum-dielectric interface, and since D = ¢E, in the vacuum
just outside the dielectric slab,

&E, =¢E +P. (5-3)

(b)

Figure 5-1 Replacement of the dielectric outside the “cavity” by a system of

polarization charges.
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Molecular Field in a Dielectric 103

under & Combining Egs. (5-1), (5-2), and (5-3) yields

cingit 1B E.=E+E, +E, (5-4)
ositely 3 which is an equation relating the molecular field to the macroscopic electric field
tion is 8 in the dielectric material. This result is quite generzl, and not restricted to the
e field =8 geometry of Fig. 5-1: nevertheless, the above derivation is instructive and will be

dbya & useful to the subject discussed in Section 5-4.
field at S The field E, arises from polarization charge density, 6, = P,, on the spherical
: surface S. Using spherical coordinates, and taking the polar direction along the
(5-1) L direction of P, as in Fig. 5-2, we obtain

dielec-
o all of

sisthe B . =i 0050) (5-5)
- ol

B where r is the vector from the surface to the center of the sphere. From symmetry,
nofE,, it is evident that only the component of dE, along the direction of P will con-
th their S5 tribute to the integral of Eq. (5-5) over the complete surface. Since
larizing 3 da=r*sin 0 df d¢,

density ; 1 2x .
s E=mc Pl 4 fo cos? 0 sin 6 df
1 1

_ =—FP. (5-6)
‘bscript, 8 3¢y

contin- 3¢

Finally, we come to the last term in Eq. (5-4), that due to the electric di poles inside
‘acuum

S. There is a number of important cases for which this term vanishes. If there are a
great many dipoles in the cavity, if they are oriented parallel but randomly dis-
(5-3) & tributed in position, and if there are no correlations between the positions of the.
; dipoles, then E’ = 0. This is the situation that might prevail in a gas or a liquid.
Similarly, if the dipoles in the cavity are located at the regular atomic positions of
a cubic crystal,* then again E' = 0, In this connection, the reader is referred to
Problem 5-2.
In the general case, E’ is not zero, and if the material contains several species
of molecule, E’ may differ at the various molecular positions. It is this term that

Figure 5-2 Calculation of the “cavity”
surface contribution to E,..

— ;
* Crystals with the highest symmetry belong to the cubic system.




104 Microscopic Theory of Dielectrics

gives rise to the anisotropic electrical behavior of calcite, for example. It is not our
purpose, however, to develop a theory of anisotropic materials; hence we restrict
further discussion to the rather large class of materials in which E' = 0. Thus, Eq.
(5-4) reduces to
1
E.=E+-—P. (5-7)
3¢q
It is interesting to note that this result would be obtained directly by the above
method if the spherical cavity were created by removing just one molecule. But
under these conditions the cavity would be so small that the replacement of the
rest of the dielectric by a system of polarization charges could not be justified.
The dipole moment of a molecule per unit polarizing field is called its polar-
izability, «. In other words,
' P = aE,. (5-8)
If there are N molecules per unit volume, then the polarization P = Np,,, and
combining this result with Egs. (5-7) and (5-8), we obtain

1
p=~¢(sfzp). (5-9)
This equation may be rewritten in terms of the dielectric constant, K, since
P = (K — 1)¢E. In this way, Eq. (5-9) becomes
3 (K-1)
CEN(K+2)

which is known as the Clausius-Maossotti equation. It is evident that Eq. (5-10)
defines a molecular property, namely, the molecular polarizability, in terms of
quantities that can be determined on a macroscopic basis.

(5-10)

5-2 INDUCED DIPOLES. A SIMPLE MODEL

The molecules of a dielectric may be classified as polar or nonpolar. A polar
molecule is one that has a permanent dipole moment, even in the absence of a
polarizing field E,,. In the next section the response of a polar dielectric to an
external electric field will be studied, but here we deal with the somewhat simpler
problem involving nonpolar molecules, in which the “centers of gravity” of the
positive and negative charge distributions normally coincide. Symmetrical
molecules such as H,, N, and O,, or monatomic molecules such as He, Ne, and
Ar, fall into this category.

The application of an electric field causes a relative displacement of the posi-
tive and negative charges in nonpolar molecules, and the molecular dipoles so
created are called induced dipoles. The simplest type of molecule that can be
envisaged is that composed of a single neutral atom. It is possible to construct a
simple classical model for the atom and from this model derive an expression for
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Metal and Plasmas

Start with the general susceptibility

2(0)= Ne? 1
gM @} — & +iwy

Fine electrons: no restoring force

F=-Kx=-ma’x=0=w, =0

Damping y due to collisions (in a solid, have electron-electron and election-phonon collisions,

with characteristic collision time 7 = %/ ).

Ne* 1
&M o’ —iwy

2(@)=-
Dielectric constant & = &,&, with

& (0)=1+ y(o)

Let’s separate out the dielectric constant due to the lattice (l.e. describes the polarization due to
all other mechanism other than the free charge) by introducing a background dielectric constant

& (Lfor lattice)

£ =6 [1+;((a))]

| ———
free electron contribution

2
,
& =6 |1-———
o —lwy
Where we have defined
,  Ne?
W, =
gM

plasma frequency

N=# free electrons/vol.

« in a solid m — M" = effective mass

* get real and imaginary parts

& _q w? (0)2 + ia)y)

4 2,2
&L ONEN 0N

2 2 2
1 ®0 Wy

a)4+0)2}/2 604+a)2]/2

So & =g +ig, with



2

[0
& =& (1—%] real part of dielectric constant
w +y

2

y_%%

L > > Imaginary part
oo +y

&, =-¢

(This is called the “Drude model” )

Most good metals have A, =3—20eV

or  w,=45x10"-3x10"s™
which is out in the UV.
For a doped semiconductor, e.g. N~10cm ™,
wp =6x10°s7 (> 4, =33um)

Which is in the mid-IR

2
(94
If the damping is not too strong a;,i > Tp then the Plasmon resonance is well defined

= Neglecting the damping

2

1)

—~ ~ P
& =& =6 (1——2]

)

For light at optical frequencies incident on a metal

0 < o,

= g <0!

A negative dielectric constant gives rise to an evanescent wave, as seen from the Helmholtz eqn.
2
w
{Vz +_2ng E=0
C

P
k? =—¢, <0=k=ix imaginary
C
= The incident wave is perfectly reflected by the metal

For xuv — x-rays, @ > w, ,SO

p

2
& =& (1—60—';] >0
1)

= Waves can propagate through the metal
= Metal becomes transparent



“ultraviolet transparency”
Al is an example of a good Drude metal
Cu, Au, and even Ag require contributions from bond electrons to get a good description of their
dielectric constants and hence reflectivity

Dispersion relation for EM waves in bulk metal:

2 2 2
0 [0 a &
=G0t 135 |- (o)

Oor w = + p 2

N
.
'
Propagating modes are only for o
rs
| -
s I a

@ > @, (UV transparency)

rd
~

-
-

~ K

Note that k=0 corresponds to “infinite wavelength”; we see on the next page that corresponds to

& = 0 at = wp > which are the longitudinal oscillations of the electron plasma
(Generally excited only by changed particle beams, not by EM waves .)
What is a Plasmon? (bulk, i.e. 3-D material)

* Assume ions are fixed

* Some excitation displaces the electrons




Ne?
£,m

Coulomb restoring force =>oscillations at the Plasmon frequency @, =

Note that at @ = @,

2
& =&, (1—%]20

£ =0 corresponds to_longitudinal excitations of the electron plasma, which do not
radiate (are not coupled to propagating transverse EM fields )

This is a general result: the zeroes of the dielectric function yield the longitudinal
excitations of the system.



