CRYSTALLINE and QUASI-CRYSTALLINE INTERFACES

FROM ORDER TO DISORDER

L. PRIESTER
Professor emeritus Université Paris 11 ICMPE/CNRS, Thiais, France

Characterization of interfaces

Homo-phase interface or Grain Boundary (GB)
Trace of the GB plane (hkl)

- Interface between two crystals of same nature and structure
- characterized by a rotation $\mathbf{R}(\theta[\mathrm{uvw}])$ or by a coincidence index

$$
\Sigma=\square \square \rho
$$

ρ : density of common nodes in the GB region

- And a grain boundary plane (hkl))

Hetero-phase interface (interface)

- Interface between two crystals of
- different structure (two phases: for example f.c.c. / b.c.c. in iron)
- different nature: metal/ceramic

A GRAIN BOUNDARY at DIFFERENT SCALES

EVOLUTION OF THE CONCEPT OF GB ORDER

1 - Amorphous cement (W. Rosenhain and D.J. Ewen, J. inst. Metals 8 (1912) 149)

2 - Periodic distribution of good fit and bad fit regions
W.T. Read and W. Shockley, Phys. Rev. 78 (1950) 275
W. Bollmann, "Crystal defects and crystalline interfaces", Springler, Berlin (1970)

3 - Periodicity of structural units (SUs)
A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1-55

4 - Quasi periodicity of structural units
D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

5 - Amorphous state of some GBs ?
D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.)

EVOLUTION OF THE CONCEPT OF GB ORDER

1 - Amorphous cement (W. Rosenhain and D.J. Ewen, J. inst. Metals 8 (1912) 149)
2 - Periodic distribution of good fit and bad fit regions
W.T. Read and W. Shockley, Phys. Rev. 78 (1950) 275
W. Bollmann, "Crystal defects and crystalline interfaces", Springler, Berlin (1970)

For low angle tilt GB

For any GB : intrinsic dislocations

Some examples of intrinsic distocations

Primary intrinsic dislocations in low angle (2°) grain boundary in a FeMo alloy

Secondary intrinsic dislocations in a high-angle (85.5°) grain boundary in alumina (oxide)

OUTLINE

The structural unit model

Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1-55

Quasi periodicity of structural units
D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

STRUCTURAL UNIT \equiv POLYHEDRAL CLUSTER OF ATOMS

Equivalent to the elemental cells in crystals (cube, hexagon ...)
Limited number of polyhedra
Analogy with the hard sphere model of liquid structure - 5 similar clusters (Bernal - 1964)

STRUCTURAL UNIT MODEL GEOMETRY

- Rational ratio $\mathrm{m} / \mathrm{n} \Rightarrow$ Periodic grain boundary
- Irrational ratio $\mathrm{m} / \mathrm{n} \Rightarrow$ Quasi-periodic grain boundary

STRUCTURAL UNIT MODEL PRINCIPLE

Any long period GB may be described as a sequence of structural units of two short period (favored) GBs.

Series for symmetrical tilt GB around $<110>$ for aluminium (FCC)

A given GB (same R and θ) in different materials

The shapes of the structural unit differs but the period is similar

Description in terms of Structural Units (SU)

VALIDITY of SU MODEL for FACETTED GB - Near $\square 9$ (Cu)

STRUCTURAL UNIT MODEL FOR TWIST GBs

Example of $\Sigma 85-8.80^{\circ}$ [001]

"STRUCTURAL UNITSI INTRINSIC DISLOCATIONS

Secondary Dislocations
(\square^{-})
\perp
b DSC

A
A
B

A

HRTEM IMAGES and HYDROSTATIC STRESS FIELDS

θ	Σ	Plan du joint	Structure	
31.59°	27	(115)	\mid B.B \mid	
34.89°	89	(229)	\mid \|lac	
38.94	9	(114)	$\|\square \mathrm{C}\|$	
50.48°	27	(113)	\mid C.C \mid	

STRUCTURAL UNIT MODEL: Multiplicity of descriptions

A favored GB may be described by differents SUs whose the energies are very \Downarrow

Any intermediate GBs may be constituted by different combinations N of these

$$
\begin{aligned}
& \text { GB period : } \mathbf{p}=m \mathbf{u}_{A}+n \\
& \mathbf{v}_{B} \quad N=i^{m} j^{n}
\end{aligned}
$$

All the N configurations are not stable
Comparisons with the hydrostatic stress field and with the HRTEM images

Examples of multiplicity of descriptions

Favored tilt GB $\square 5(210)-36.9^{\circ} \quad$ [001]

\square

Coincidence GB $\square 17(530)-28.1^{\circ} \quad[001]$

$$
\mathrm{N}=2^{2} .1^{1}=4
$$

Energy ratio: 1.07 / 1.09/

STRUCTURAL UNIT DISTORTION

$\Sigma \square 1$ (single crystal): same unit A and A' rotated by 18
$\Sigma=3$ (twin): unit $\mathrm{D} \equiv 2 \mathrm{~A}$ units rotated by 70.5°
$\Sigma=27(552) 32.5^{\circ}$

$\Sigma=9$: unit E formed by two distorted and rotated A units
$\Sigma=27$: period $=$ EEA but some E units are distorted

SU DISTORTION \Rightarrow HIERARCHY of GB DESCRIPTIONS

$\square 9(221)$ could be described by A and D units but strong distortion \Downarrow
Better description by E unit \Rightarrow then use of E for the structure of $\square 11$ (332)

HIERARCHY OF GB DESCRIPTIONS

General rational GBs
(rational ratio m / h of A and B units)

- As the order of the description increases \Rightarrow the distortions of the SUs decrea
- The atomic description requires the knowledge of the basic structures

HOW TO GENERATE the SEQUENCE of SUs ?

$$
\underbrace{\mathbf{p}=m \mathbf{u}_{\mathrm{A}}+\mathrm{n} \mathbf{v}_{\mathbf{B}}}
$$

There is a huge number of ways for arranging m units A and n units B in a periodic fashion

$$
\left.\mathrm{w}=\frac{(\mathrm{m}+\mathrm{n}-1)!}{\mathrm{m}!\mathrm{n}!} \quad \quad \text { (For } m=13 \text { and } n=19, w=10.855 .425\right)
$$

THUS

To determine the sequence of structural units, it is necessary to use:

- an algorithm
A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A 309 (1983) 1.

Main assumption: The boundary structure changes in as smooth and continuous manner as possible when θ varies

- a strip band method (analogous to what is used for quasicrystallography),
A.P. Sutton, Prog. Mat. Sci. 36 (1992) 167.

ALGORITHM to DETERMINE THE S.U. SEQUENCE in a GB

SU sequence: ABABBABABBABABBABABBABABBABABBAB

The algorithm always results in the largest distance as possible between the minority units Two adjoining minority units never appear

OUTLINE

Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1-55

Quasi-crystalline interfaces

Quasi periodicity of structural units
D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

HOW TO GENERATE QUASIPERIODIC SEQUENCES

ALGORITHM (Levine and Steinhard, 1984)

For irrational tilt GBs: $m_{A} / n_{B}=\underbrace{m / n}_{\text {rational }}+\lambda$

More simple quadratic form such as:
$\lambda^{\boxed{ }} \square \square \square \square \lambda-1=0$ in that case $\lambda_{1}=\tau \underbrace{\tau=(1+\sqrt{5}) / 2}$

Golden number
$\mathbf{u}_{A}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad \mathbf{v}_{\mathrm{B}}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \quad$ Self - similar sequence obtained by applying the operation $\mathrm{M}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

Then repeat...

Number of iterations	Sequence of US	m_{A} / n_{B}
0	AB	$1 / 1$
1	BAB	$1 / 2$
2	BABBA	$2 / 3$
3	BABBABAB	$3 / 5$
4	BABBABABBABBA	$5 / 8$
\Downarrow	\Downarrow	\Downarrow
∞	Quasi-periodicity	$\mathbf{1} / \tau$

STRIP METHOD

Irrational slope of the E line in the section/projection

Quasiperiodic Structure of a GB in gold

OUTLINE

Periodicity of structural units (SUs)

A.P. Sutton and V. Vitek, Phil. Trans. R. Soc. Lond., A309 (1983) 1-55

Quasi periodicity of structural units
D. Gratias and A. Thallal, Phil. Mag. Letters, 57 (1988) 63

Amorphous state of some GBs ?

D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435.

CRYSTALLINE I AMORPHOUS STATE of a $\Sigma=29$ TWIST GB in SILICON

Amorphous GB (relaxed at high

(c)
D. Wolf, Current opinion in Solid State and Materials Science 5 (2001) 435

GB ORDER / DISORDER?

Distinction between ORDER and ENERGY

ENERGY not controlled by the order at large distances (periodicity))
controlled by the short-distance order or local arrangement of atoms (

The square of the structure factor
$\mathrm{S}(\mathrm{k})^{2}$ is function of the crystallinity
$=1$ (if 100\% crystal)
Tilt GB is crystalline
Twist GB is amorphous
Although
$E_{(110) \text { twist }}<E_{(123) \text { twist }}$

REAL GRAIN BOUNDARIES

GBs are not infinite but connected to others in polycrystals

They are constrained at triple junctions

L. Priester, D.P. Yu, J. Mat. Sci. Eng., A 188 (1994) 113.

GBs are not perfect \Downarrow
they contain defects

