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All-optical switch with two periodically modulated
nonlinear waveguides
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We propose a type of all-optical switch which consists of two periodically modulated nonlinear optical
waveguides placed in parallel. Compared to the all-optical switch based on the traditional nonlinear direc-
tional coupler without periodic modulation, this all-optical switch has much lower switching threshold
power and sharper switching width. © 2010 Optical Society of America
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The nonlinear directional coupler (NLDC), a device
consisting of two parallel straight nonlinear
waveguides, has received much attention for its po-
tential applications as a type of all-optical switch
[1–4]. Its switching operation is based on the
intensity-dependent power transfer between its two
coupled waveguides. For a cw laser beam, at input
power below threshold (or critical) power Pc, most of
the light emerges from the neighboring waveguide
over a coupling length; at high power above Pc, most
of the light remains in the launching waveguide over
the same length. Therefore, the change in the input
power can cause light propagation to be switched
from one waveguide to the other.

So far, the application of the NLDC as an all-
optical switch is limited by its high threshold on
switching power. One approach to lower the high
switching power is to place the two waveguides with
a certain special shape, such that the variable cou-
pling coefficient NLDCs are obtained [5,6]. This
method has one drawback. The length of the all-
optical switch increases exponentially with the sepa-
ration. Another approach, which has been tried ex-
perimentally [7–9], is to use a pulsed beam to lower
the overall demand on the laser power as a cw beam
would. But experimental results also showed some
drawbacks. For example, an optical pulse usually
breaks up at the output ports and the switching is
not as sharp as for the case of cw beams. One can of
course lower the switching power by using materials
with larger Kerr nonlinearity. However, it is not easy
to find this kind of material. At the same time, it is
found that larger Kerr nonlinearity usually leads to a
slower response time [10,11].

In this Letter, we propose a different type of all-
optical switch with much lower threshold on switch-
ing power. As illustrated in Fig. 1, this device is made
of two nonlinear waveguides placed in parallel with
periodically modulated refractive index along the
propagation direction. Such a modulated coupler,
functioning as an all-optical switch at an appropriate
length, has much lower critical power than the tradi-
tional NLDC, since the periodical modulation of the

nonlinear waveguides can effectively increase their
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nonlinearity. In addition, this device has sharper
switching width. This modulated switch permits in
principle arbitrarily low switching threshold power;
its only foreseeable drawback is longer coupling
length. This work is motivated by the phenomenon of
nonlinear coherent destruction of tunneling (NCDT)
[12,13] and its recent experimental demonstration
with two coupled periodically modulated nonlinear
waveguides [14].

We first give a brief introduction to the traditional
NLDC. This device is made of two straight nonlinear
parallel waveguides which are adjacent to each other
so that they are coupled optically. The operation of
the NLDC as an all-optical switch was studied in de-
tail by Jensen [1]. He showed that if all the light is
initially shined into one waveguide with the input
power P0, then the amount of the light remaining in
the launching waveguide is given by P1�L�=P0�1
+cn��L /Lc �m�� /2, where L is the length of the cou-
pler and cn��L /Lc �m� is the Jacobi elliptic function
[16]. The parameter Lc=� /v is called the coupling
length representing the shortest length for the light
switching from one waveguide to the other without
nonlinearity. Here, v is the coupling coefficient and
the other parameter m is defined as m= �P0 /Pc�2 with
Pc being the threshold (or critical) power and given
by Pc=��eff /Lcn2. Here, � is the free-space wave-
length of the light, �eff is the effective cross section of
the waveguide, and n2 is the Kerr nonlinear coeffi-
cient (or nonlinear refractive index). For NLDC to
function as an all-optical device, the length L is usu-

Fig. 1. (Color online) Schematic drawing of a periodically
modulated all-optical switch. The two lines represent two
waveguides, whose refractive indexes are out-of-phase
modulated periodically along the z direction [14]. Periodic
modulation can also be achieved by periodically curving

both waveguides [15].
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ally the coupling length Lc. The analysis of the ellip-
tic function cn shows that the NLDC can function as
a switch: most of light stays in the launching wave-
guide if the input power P0 is above the critical power
Pc and switch to the neighboring waveguide if P0
�Pc.

Our proposed all-optical switch is a modification of
the NLDC by modulating the two waveguides peri-
odically. In the following discussion, we assume that
the light is propagating along the z direction and
strongly localized in the y direction. In this case, the
light propagation in this nonlinear directional
waveguides is described by an effective two-
dimensional wave equation [12,14],
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where ns is the substrate refractive index, V0�x� is the
effective refractive index profile of the waveguides
along the x direction with a symmetric double-well
structure, and V1�x ,z� describes the periodic modula-
tion of the waveguides along the z direction. This pe-
riodic modulation can be realized by an out-of-phase
harmonic modulation of the refractive index
[14,17,18] or the periodic curvature in the coupled
waveguides along the propagation direction
[15,19–21]. In the current experiments [14,15,17–21],
V1�x ,z� can be written in the form V1�x ,z�=V1��x�f�z�
with V1��−x�=−V1��x�.

Owing to the symmetric double-well structure of
V0�x�, we apply the two-mode approximation [12] and
write ��x ,z�= �c1�z�u1�x�+c2�z�u2�x��exp�−2i�E0z /��,
where u1 and u2 are localized waves in the two
waveguides and the two coefficients are normalized
to one, �c1�2+ �c2�2=1. E0 is defined as E0
=�u1,2

� H0u1,2dx with H0=−�2 / �8�2ns��2 /�x2+V0�x�. It
is reasonable to assume that the localized wave is a
Gaussian, u1,2�x�=�Dexp�−�x±a /2�2 /2b2�, where a is
the distance between the two waveguides, b is the
half-width of each waveguide, and D is related to the
input power of the system P0 as D=P0 / ���b�. P0 has
the unit of W /m. Strictly, the width of u1,2 changes
due to the modulation of the refractive index. How-
ever, the resulting effects is likely secondary as the
theoretical predictions made with this approximation
agree with the experiments quite well [14]. The
variation of the width b is thus not considered here.
This two-mode approximation eventually simplifies
Eq. (1) to
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where S�z�=−4���u1
�V1�x ,z�u1dx� /�, v=4�

���u1
�H0u2dx� /�, and �=�2�n2P0 / ��b�. Since the
real waveguide is three dimensional, we replace b in
� with �eff to relate our nonlinear parameter � to real
experimental parameters and write �=2�n2P0 /��eff
[1,2], where P0 has the unit of W. When S=0, Eqs. (2)
and (3) are reduced to the well-known Jensen equa-
tion, where the critical power is defined as Pc
=2vP0 /� [1].

The presence of the periodic modulation in the two
coupled waveguides strongly affects the behavior of
the all-optical switch. To investigate this effect, we
solve Eqs. (2) and (3) numerically for the following
form of S�z�=S cos��z� [12–15,17–21]. Here, S and �
are the amplitude and frequency of the modulation.
Our numerical results are shown in Fig. 2, where the
relative output power (to the total power) is plotted
as a function of the input power for three different
values of the ratio S /� with certain fixed ratio of � /v.
We observe two important trends for this case. As the
ratio S /� is increased (1) the threshold switching
power Pc� decreases and (2) the width of the switching
step becomes smaller. This demonstrates that by in-
creasing the amplitude of the periodic modulation
one can improve the performance of the all-optical
switch in two aspects: lowering the threshold switch-
ing power and sharpening the switching. We have
computed numerically how the critical switching
power changes with S /� for two different values of
ratio � /v. The results are plotted in Fig. 3(a), show-
ing a significant lowering of threshold switching
power as S /� increases. To measure the width of the
switching steps in Fig. 2, we introduce a new quan-
tity 	P, which is the distance between the two posi-
tions of the input power where the relative output
powers are 25% and 75%, respectively. Figure 3(b)
shows that the switching width 	P becomes smaller
with increasing S /�, i.e., the switching becomes
sharper and sharper as S /� increases.

To better understand the above results, we con-
sider the high frequency limit, �
max�v ,�	, which is
the case for the current experiment with optical
waveguides [14]. We take advantage of the transfor-
mation c1,2=c1,2� exp�±iS sin��z� /2��. After averaging

Fig. 2. Relative output powers as functions of the input
power for three different values of S /� at � /v=10 for S�z�
=S cos��z�. The solid lines are for the launching wave-
guide, while the dashed lines are for the neighboring wave-
guide. The input power P0 is scaled by the threshold

switching power Pc.



February 1, 2010 / Vol. 35, No. 3 / OPTICS LETTERS 323
out the high frequency terms, we arrive at a nondriv-
ing nonlinear model [12,19]

ic1�̇ =
v

2
J0�S/��c2� − ��c1��2c1� , �4�

ic2�̇ =
v

2
J0�S/��c1� − ��c2��2c2� , �5�

where J0�x� is the zeroth-order Bessel function.
These two equations are exactly the Jensen equa-
tions, except that the coupling constant v is renor-
malized by a factor of J0�S /��. This shows that all
the effect of the periodic modulation, S�z�=S cos��z�,
is manifested in the renormalized factor J0�S /��.
Consequently, the nonlinear parameter � is effec-
tively increased by a factor of 1/J0�S /�� and the
threshold power Pc� is lowered by a factor of J0�S /��,
i.e., Pc�=PcJ0�S /��. This implies that arbitrarily low
switching powers may be obtained when the ratio
S /� is chosen to be close to the first zero of the Bessel
function J0�S /��. This analytical result is compared
to our previous numerical results in Fig. 2(a). The
switching width can also be computed by combining
Lc and Pc�. The results agree very well with our pre-
vious numerical results, as seen in Fig. 2(b).

As in the traditional NLDC, an appropriate length
has to be chosen for our device to function as an all-
optical device. The appropriate length, which may be
called switch length, is given by Lc�=Lc /J0�S /��. This
indicates that to lower the threshold switching power
we have to make a sacrifice by using longer
waveguides. In fact, if one wants to lower the critical
switching power by a factor, then one has to use
waveguides that are longer by the same factor.

In conclusion, we have proposed a modification to

Fig. 3. (a) Threshold switching power as a function of the
ratio S /�. (b) Switching width as a function of the ratio
S /�. This is for the case of S�z�=S cos��z�. The open circles
are for � /v=10, the squares are for � /v=20, and the solid
lines represent the theoretical results at the high-
frequency limit.
the traditional NLDC by modulating the nonlinear
waveguides periodically. When this device functions
as an all-optical switch, it has much lower threshold
switching power and sharping switching.
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