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•Introduction of graphene

•Why are the electrons in graphene Dirac fermions?

•Electric transport theory
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Y. Zhang et al., 
PRL 96, 136806 (2006)



• High optical transmittance
low resistivity
high chemical stability and mechanical strength 

• The single-particle electronic states around the 
Dirac point is identical to that of the massless Dirac
fermions
>> graphene experimentalists claim that they are 
doing high-energy experiments on table-top 
equipment

arXiv:0803.3031



Dirac fermions
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A. Honeycomb lattice 
= the tilted quadrilateral 

lattice consisting of the 
unit diamond cells



B. Fourier transform
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Expt: A. Bostwick et al., Nat. Phys. 3, 36 (2007)

Theory: X. –Z. Yan & C. S. Ting, PRB 76, 155401 (2007)



C. For low energy excitations, 
expanding hk around hk = 0 to 
the order of linear k, and 
returning to the orthogonal 
system
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D. There are two Dirac points in 
the Brillouin zone

3τσ kvhk

rr
⋅⇒

1

2

Q



Dirac particle
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Electric conductivity

K. S. Novoselov et al., Nature 438, 197 (2005)
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Theoretical model
Hamiltonian in the presence of impurities

For δ-type potential, σ is 
given as in the figure



In momentum space
• For low carrier concentration, consider only low 

energy states close to the Dirac points.
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(a) Self-consistent Born approximation
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Electric conductivity
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(b) Current vertex, integral 4x4 matrix equation
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For details, see X. –Z. Yan et al. PRB, 77, 125409 (2008)
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Expt.



Summary
1. Using SCBA, we have presented electric 

transport theory for Dirac fermions under 
finite-range impurity scatterings in graphene.

4 integral equations for determing the vertex 
correction

2. The theory is in good agreement with 
experiment.



Weak Localization of Dirac Fermions in Graphene

• No WL was observed, contradictory with the 
conventional theory

• Existing theories, δ(r)-potential impurities
• Charged impurities—σ ∝ concentration of 

doped electrons
• For charged impurity, what is the theoretical 

prediction for WL of DF in graphene?

• For details, see X. –Z. Yan and C. S. Ting, PRL, 101, 
126801 (2008)



Quantum-interference correction (QIC) to 
the electric conductivity
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Cooperon propagator

To solve this integral 4x4 matrix equation, we classify 
the Cooperon by pseudospin and isospin according to 
McCann et al. [PRL, 97, 146805 (2006)]

• singlet pseudospin channel, to WL effect
• triplet, delocalization effect



Isospin
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Solution for the Cooperon propagator

1. For the Cooperon of zero momentum q = 0 in the 
singlet pseudospin channel, we obtain an explicit 
eigen state ψ within the SCBA. The state is the 
most important one since it gives rise to the 
logarithmic divergence to QIC.

2. For small q > 0 or triplet channel, the important 
states are obtained by perturbation from ψ.

Lower cutoff qm = max(1/Lin,1/L). 
τin inelastic collision time, using the result of 
Yan&Ting, PRB 76, 155401 (2007).



Eigenvalues of Cooperon propagator
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Summary
1. Using SCBA, we have investigated WL of  

Dirac fermions under finite-range impurity 
scatterings in graphene.

2. The WL is present for large samples at finite 
carrier concentrations. Close to zero doping, 
the system may be delocalized.WL is 
quenched at low T for small size  samples.

3. The calculated minimum conductivity is 
about 4.5, in good agreement with 
experiment.
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